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How do we get there?

3

• Calculate local energy loss rate within leading order Hot QCD

– Done by Arnold, Moore and Yaffe (AMY).

• Use Boltzmann-like kinetic equation to evolve parton mo-

mentum distributions.

(Major) Differences with others

• Medium is dynamic. – Absorption, qq̄ annihilation included.

• Loss rate is good for all pT > T .

• We solve the time evolution equation.



Little Detour
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S.Jeon, J.Jalilian-Marian and I.Sarcevic, QM02.
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Pisarski, QM02 Summary.



Radiations in QED and QCD
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Amplitude to radiate: Need to sum

over all N and all M and all possible

radiation points. Then square it to

get the radiation rate. (But we all

knew that. BDMPS told us so.)

. . .
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s1
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k

p   k

. . . .



Scales
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1/g  T2

1/g  T2

gT

g g
k > T

Reason to resum:

1. Radiation angle is g. Hence the transverse speed is g.

2. gT kick makes the size of the parton 1/gT .

3. It takes (1/gT )/g = 1/g2T to get separated.

4. But that’s just the mean free path for the next gT kick!

5. Another way of saying LPM matters.



Photon Radiation with scalar quarks
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• Will need it later for photon production.

• Simpler problem to solve.

• Take care of spin dependent factors later.

t1 t2 t3 tN

p

k

p   k

. . . .

γ



Diagrams to sum

9

L

K    L_

KK Choose a frame such that

K = (k,0,0, k).

k = O(T ).

To estimate, use the HTL resummed propagator for K − L line

but use free propagator for the L line. nB(O(T )) ∼ O(1).

Σµν
I ∼ αEM

∫
d4L (2L−K)µ(2L−K)νδ(L2 −m2

T )ρ(L−K)

∼ αEM

∫
d3l

El
(2L−K)µ(2L−K)νρ(L−K)

Must project with

P̂
µν
T = gµν −KµKν/K2



One-loop Cont.
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Two regions dominate:

1. Hard momentum Lµ = O(T )

Every quantity is O(T ) except

ρ(K − L) ∼
ΣI

T4
= O(g2)

==> ΣI,1 = O(αEMαsT
2)

2. Co-linear with K: L = (O(T ), O(gT ), O(gT ), O(T )) – Pinching
pole contribution

ΣI,1 ∼ αEMg2T2(gT )2
ΣI(L−K)

|(L−K)2 −m2
T |2 + ΣI(L−K)2

∼ αEMg2T2(gT )2
ΣI(L−K)

|2L·K|2 + ΣI(L−K)2

= O(αEMαsT
2)



Ladder Diagrams
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KK
....

Q

L+Q

L+Q   K_

gT

gT

1
g  T3 2

Consider a rung Q = O(gT ).

Each vertex gT . The gluon

propagator is 1/g3T2 (HTL,

Bose enhanced). So a rung

is O(1/g).

Phase space integral goes like

d3qdq0δ((L + Q)2 −m2
T )G(L + Q−K) ∼

g3T3

g2T3
∼ g

Altogether, adding one more rung is O(1). ==> Must resum.



Schwinger-Dyson Equation
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P

P+K

K
Q

P−QP

P+K P+K−Q

P

P+K

K K

After much analysis, simplification: Final results

2p⊥ = iδE f(p⊥; p||,k) + g2CR

∫
Q

2πδ(q0 − q||)
m2

D

q2
⊥(q

2
⊥+ m2

D)

×
[
f(p⊥; p||,k)− f(p⊥−q⊥; p||,k)

]
with δE = k0 + Ep − Ep+k



Photon Radiation Rate
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dΓγ

d3k
=

dF q2αEM

4π2k

∫ ∞
−∞

dp||
2π

∫
dp⊥

(2π)2

∣∣∣∣Jp||←p||+k

∣∣∣∣2
×Re

{
2p⊥·f(p⊥; p||,k)θ(p||)

}
with

∣∣∣∣Jp||←p||+k

∣∣∣∣2 =


nb(k+p||)[1+nb(p||)]

2p||(p||+k) scalars

nf(k+p||)[1−nb(p||)]

2[p||(p||+k)]2

[
p2
||+ (p||+ k)2

]
fermions



Generalize to Gluon Radiation
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SD Equation for Gluon Radiation

Must take care of:

• Gluon momentum k can change now.

• Color factors.

• Must keep track of quarks and gluons.

2h = iδE(h, p, k)F(h) + g2
∫

d2q⊥
(2π)2

C(q⊥)×

×
{
(Cs − CA/2)[F(h)− F(h−k q⊥)]

+(CA/2)[F(h)− F(h+pq⊥)]

+(CA/2)[F(h)− F(h−(p−k)q⊥)]
}
,

δE(h, p, k) =
h2

2pk(p−k)
+

m2
k

2k
+

m2
p−k

2(p−k)
−

m2
p

2p
.



Gluon – Cont.
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Here m2 are the medium induced thermal masses, equal to m2
D/2

for a gluon and Cfg2
s T2/4 = g2

s T2/3 for a quark. For the case of

g → qq, the (Cs − CA/2) term is the one with F(h− pq⊥) rather

than F(h− k q⊥).



Gluon Radiation Rate
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dΓg(p, k)

dkdt
=

Csg2
s

16πp7

1

1± e−k/T

1

1± e−(p−k)/T
×

×



1+(1−x)2

x3(1−x)2
q → qg

Nf
x2+(1−x)2

x2(1−x)2
g → qq

1+x4+(1−x)4

x3(1−x)3
g → gg


×

∫
d2h

(2π)2
2h ·Re F(h, p, k) ,

where x ≡ k/p is the momentum fraction in the gluon (or either

quark, for the case g → qq).

h ≡ p× k: 2-D vector. O(gT2)



Time evolution equation
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dPqq̄(p)

dt
=

∫
k
Pqq̄(p+k)

dΓq
qg(p+k, k)

dkdt
− Pqq̄(p)

dΓq
qg(p, k)

dkdt

+2Pg(p+k)
dΓg

qq̄(p+k, k)

dkdt
,

dPg(p)

dt
=

∫
k
Pqq̄(p+k)

dΓq
qg(p+k, p)

dpdt
+Pg(p+k)

dΓg
gg(p+k, k)

dkdt

−Pg(p)

dΓg
qq̄(p, k)

dkdt
+

dΓg
gg(p, k)

dkdt
Θ(2k−p)

 ,

• k integrals range: (−∞,∞).

• k < 0: Absorption of thermal gluons.

• k > p: annihilation against and antiquark of energy (k − p).

• Θ(2k − p): To prevent double counting of final states.



Relationship to BDMPS
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(only to the equation, but not the solution)

(c.f. Eq.(20) in BDMS NPB 531, 403 (1998).)

∂

∂t
f(U, V, t) =

i(U − xV )2µ2

2x(1− x)p
f(U, V, t)

+
ρσ

CF

∫
d2Q V (Q2)

[
Nc

2
f(U−Q, V−Q, t)−

1

2Nc
f(U, V−Q, t)

−
Nc

2
f(U, V, t)−

CF

2
f(U, V, t)−

CF

2
f(U, V, t) +

Nc

2
f(U−Q, V, t)

]

Can identify:
∫ ∞
t1

dt′ f(U, V, t)↔ F(p, k

Except: BDMPS use (i) V (Q2) = 1/(Q2 +m2
D)2 instead of HTL

result 1/[Q2(Q2 +m2
D)]. (ii) δE = h2/2pk(p− k) (mass terms are

missing)



Relationship with BDMPS
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(solutions)

• BDMPS typically solve the equation and calculate
dI

dω
in a

large h approximation, valid for large p/T, k/T but unreliable
for k ≤ 10T .

• Time (medium) evolution: Probability to lose energy p

P (p) =
∞∑

n=0

1

n!

 n∏
i=1

∫ ∞
0

dωi,
dI(ωi)

dω

 δ(p−
n∑

i=1

ωi) exp
(
−

∫ ∞
0

dω
dI

dω

)
• This is the solution of

dP

dt
=

∫
dωΓBDMPS(ω)P (p + ω, t)− P (p, t)

∫
dωΓBDMPS(ω)(1)

We do (only displaying one component), with −∞ < ω <∞.

dP

dt
=

∫
dωΓ(p + ω, ω)P (p + ω, t)− P (p, t)

∫
dωΓ(p, ω) (2)



Results – Evolution
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Lesson: Using just dE/dx is dangerous.



Parton distribution ratios
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This is for illustration only. Using P (p,0) = 1/(p2 + p2
0)

n.

Lesson: Using just dE/dx is dangerous!



Parton distribution ratios
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This is for illustration only.

Extreme LPM limit is reached, but only at very high energies.



Understanding the ratio
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Use BDMPS expression for the quenching factor for 1/pn with

large n but with the energy range extended to ω < 0:

RAA(p) ≈ exp
(
−(1− e−ωn/p)

∫ ∞
−∞

dω
∫ t

0
dt′Γ(p, ω, t)

)
(3)

For Γ, use simple estimates

ω
dI

dωdt
≈

α

π

Nc

λ
for 0 < ω < λµ2

ω
dI

dωdt
≈

α

π
Nc

√
µ2

λω
for λµ2 < ω < λµ2(L/λ)2

dI

dωdt
≈

α

π|ω|
Nc

λ
e−|ω|/T for ω < 0



Understanding the ratio – Cont.
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• Features are roughly produced.

• Flat ratio due to energy-loss and thermal absorption

• BH part of the energy-loss is important.



Baseline calculation
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Using P.Aurenche et al.’s program.



Pion Production
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dNAA

dyd2pT
=
〈Ncoll〉

σin

∑
a,b,c,d

∫
dxadxb gA(xa, Q)gA(xb, Q)

×Kjet
dσa+b→c+d

dt

D̃π0/c(z, Q)

πz
with

D̃π0/c(z, Q) =
∫

d2r⊥P(r⊥)D̃π0/c(z, Q, r⊥,n)

and

D̃π0/c(z, Q, r⊥,n) =∫
dpf

z′

z

(
Pqq/c(pf ; pi;∆t)Dπ0/c(z

′, Q) + Pg/c(pf ; pi;∆t)Dπ0/c(z
′, Q)

)
with z = pT/pi and z′ = pT/pf .

∆t determined by the location of the production r and the di-
rection of the jet n.



Nuclear Modification Factor
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1-D expansion included.



Nuclear Modification Factor (LHC)
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High pT v2
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V2(pT): Energy Loss Calculations (2)

Turbide et al, Phys. Rev. C72:014906, 2005 

⇒See plenary talk by C. Gale Monday morning.

• AMY -  BDMS- like energy 
loss calculat ion 
– w/  HTL screening masses
– Addit ional diagrams beyond 

bremsstrahlung

• Calculat ion an ex tension 
of work in:

PHENIX Preliminary

0- 20%

PHENIX Preliminary

20- 40%

PHENIX Preliminary

40- 60%

Brian Cole’s QM05 plenary session slide. Mostly geometry.



γ from jets and QGP
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Simon Turbide’s Ph.D. Thesis work (w/ Charles Gale).

Ref: Turbide, Gale, Jeon and Moore, PRC 72, 014906, 2005.

Photon sources:

• direct photons

• jet bremsstrahlung

• jet + thermal qq̄ → gγ and gq → γq

• thermal + thermal qq̄ → gγ and gq → γq

• jet fragmentation



γ – Baseline
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γ – Effect of parton energy loss
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γ – Composition
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γ – PHENIX pre-QM05
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γ – PHENIX QM05
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γ – LHC prediction
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γ/γ Ratio – PHENIX
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γ/γ Ratio – LHC prediction
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Conclusions and Caveats
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The Good

• Calculated and used the full leading order Hot QCD radiation

rates for both gluons and photons.

• Important to use the full momentum distribution at any given

time, not just dE/dx.

• Geometry and 1-D expansion included.

• Good description of existing data – pions and photons.

• For photons, jet-thermal interaction is crucial.

• LHC predictions – Should be better since pQCD should work

better there.
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The Bad

• Calculations consistent in the g � 1 limit for momenta
T < p. Yet for quantitative calculations, we needed αs ≈ 1/3
or g ≈ 2! So in reality, one must sum all diagrams, not just
pinching part of the ladder diagrams!

– At this leading order, αs is an overall factor. So one might
hope that the structure of the solution is OK.

– Right now, this is best we can do with perturbative cal-
culation.

• Q = pT?

– Factor of 2 either way doesn’t change results too much.

– But really it should be something like µpT (or may even
be Q2

0 + ∆k2
T ).
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The Ugly (Ducklings)

• Do better job with the medium evolution? – Need 3-D hydro

code. Working on it.

• What about jet correlations? – Need to keep track of the

evolution of the joint probability function of two jet energies.

Single particle distribution was hard enough!

• Most energy-loss calculations these days do get RAA right. Is

there an experimental way to distinguish? – Maybe. Photon

bremsstrahlung due to acceleration should be able to distin-

guish few hard radiations and many soft radiations. How to

fish that out of all others is another matter. Maybe some

corner of momentum space? Will work on it.


