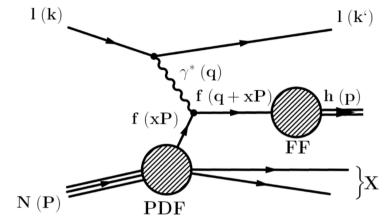
Atomic mass dependence of hadron production in DIS on nuclei

D. Grünewald, H.J. Pirner, A. Accardi, V. Muccifora Universität Heidelberg, Iowa State Univ., INFN - Frascati

Outline


Part I (The model):

- Review: DIS
- Building blocks of the model:
 - Rescaling of PDF and FF
 - Absorption factor
- Comparison with HERMES data

Part II (A-dependence):

- Review: A dependence of different models
- Analytical investigation ⇒A suitable observable
- Analysis of data with the new observable
- Conclusions

Review: Semi Inclusive deep inelastic scattering

V ariable C ovariant L ab. fram e Q² - q² 2 M x v

E '- E

 $\frac{Q^2}{2 M v}$

 $\frac{E_{h}}{v}$

$$\frac{q p}{\sqrt{P^2}}$$

$$\frac{-q^2}{2 P q}$$

 Factorization theorem in QCD:

$$\frac{d^2\sigma}{dxd\nu dz}\bigg|_{SIDIS} = \sum_f e_f^2 q_f(x,Q^2) \frac{d^2\sigma^{lq}}{dxd\nu} D_f^h(z,Q^2)$$

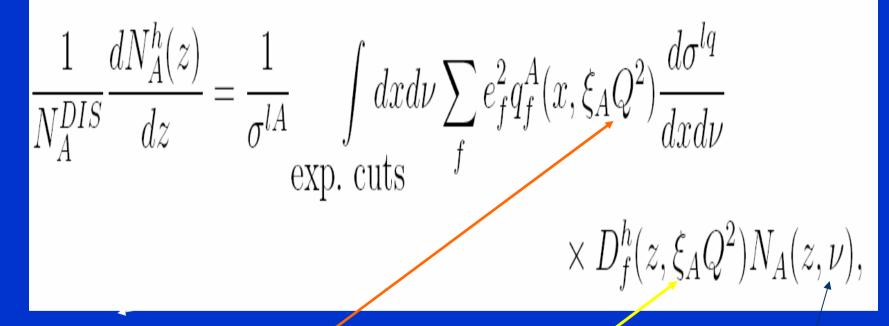
• Multiplicity:

$$M^{h}(z) = \frac{1}{N_{A}^{DIS}} \frac{dN_{A}^{h}(z)}{dz}$$

$$\frac{1}{N^{DIS}} \frac{dN^h(z)}{dz} = \frac{1}{\sigma^{lp}} \int dx d\nu \sum_f e_f^2 q_f(x, Q^2) \frac{d\sigma^{lq}}{dx d\nu} \times D_f^h(z, Q^2) \times D_f^h(z, Q^2)$$

$$\sigma^{lp} = \int dx d\nu \sum_{f} e_f^2 q_f(x, \xi_A(Q^2)Q^2) \frac{d\sigma^{lq}}{dx d\nu}$$

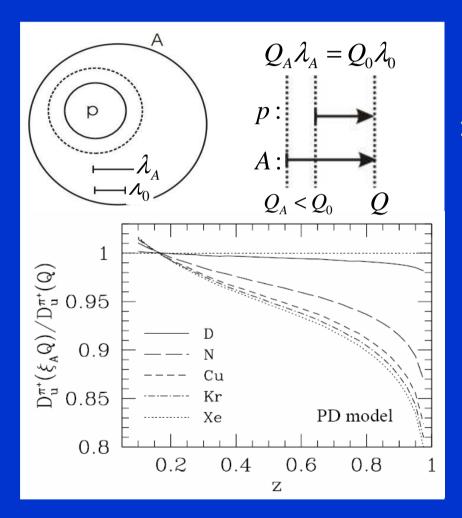
exp. cuts


29.09.05

v

Х

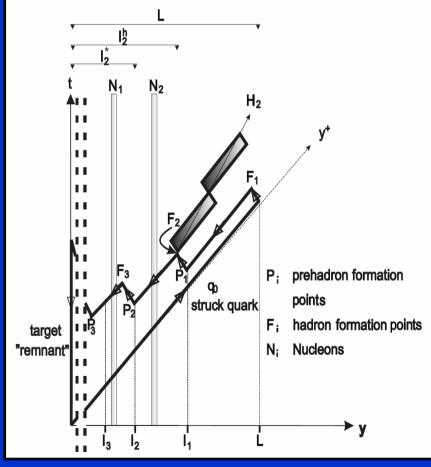
Ζ.


Building Blocks of the model

Rescaling of Parton Distribution, Rescaling of Fragmentation Function Calculation of the mean formation times of the prehadron and hadron Calculation of the Nuclear Absorption Factor N_A , using formation times

29.09.05

Rescaling of PDF and FF H.J. Pirner and O. Nachtmann Z. Phys. C21 (1984)


- Idea: Quarks in bound nucleons have access to a larger region in space λ_A > λ₀
 ⇒Smaller confinement scale
- Consequence:

$$\frac{1}{A}q_f^{N_{|A}}(x,Q^2) = q_f^N(x,\xi_A(Q^2)Q^2)$$
$$D_f^{h|A}(z,Q^2) = D_f^h(z,\xi_A(Q^2)Q^2)$$
$$\xi_A(Q^2) = \left(\frac{\lambda_A}{\lambda_0}\right)^{\frac{\bar{\alpha}_s}{\alpha_s(Q^2)}}$$

 Rescaling implies a longer DGLAP evolution (increased gluon shower)

The prehadron concept

schematic space time picture of hadronization

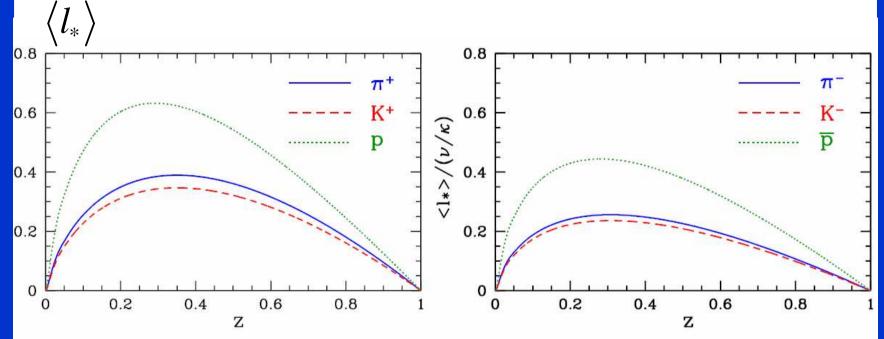
prehadron: colorless
object evolving into the
observed hadron
first rank hadron contains
struck quark

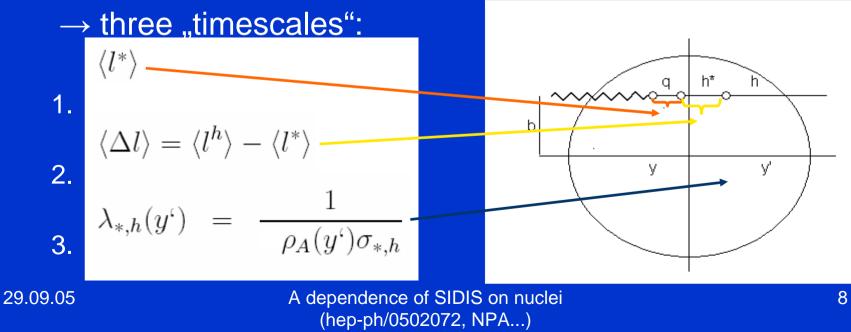
 \Rightarrow only hadrons which contain the struck quark are producible as first rank

29.09.05

Average prehadron formation lengths

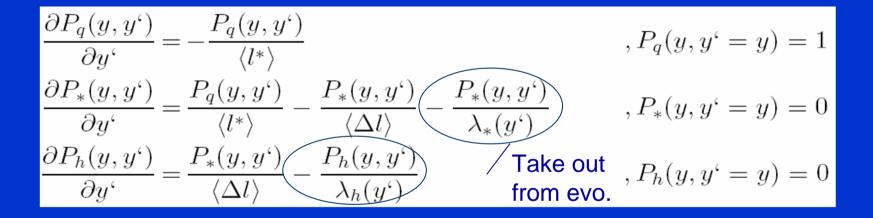
computed in the LUND string fragmentation model

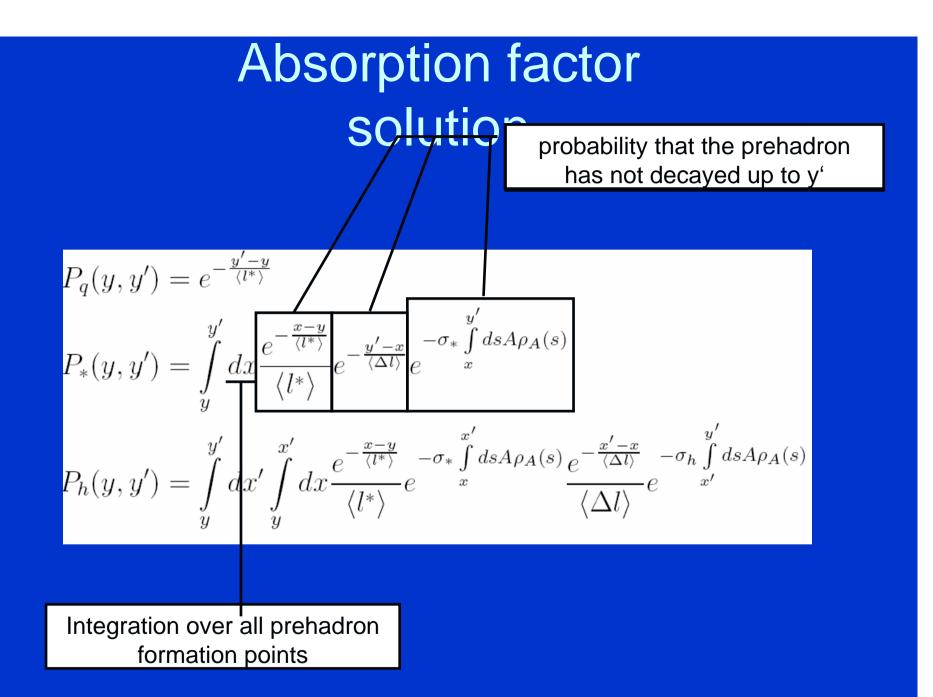



Fig. 3. Computed prehadron formation lengths when an up quark is struck by the virtual photon. Left: When a π^+ , K^+ or p is observed, the corresponding prehadron can be created at rank $n \ge 1$. Right: When a π^- , K^- or \bar{p} is observed, the corresponding prehadron can be created only at rank $n \ge 2$.

$$\left\langle l_{h}\right\rangle =\left\langle l_{*}\right\rangle + zV/\kappa$$

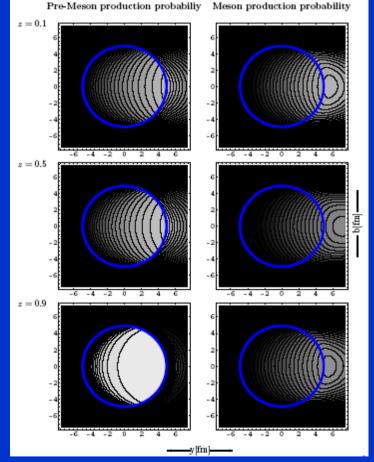
29.09.05


Absorption model


- Dominant contribution to observed particles:
 - Every inelastic interaction lowers the hadron energy
 - Fragmentation functions falls steeply for large z
 - \implies Dominant contribution are hadrons which have not interacted
- Take into account only hadrons which have not interacted
- Consider hadronization as a decay process

Absorption factor evolution equations

 Decay equation for probability to find an intermediate state at y' if the initial interaction took place at y

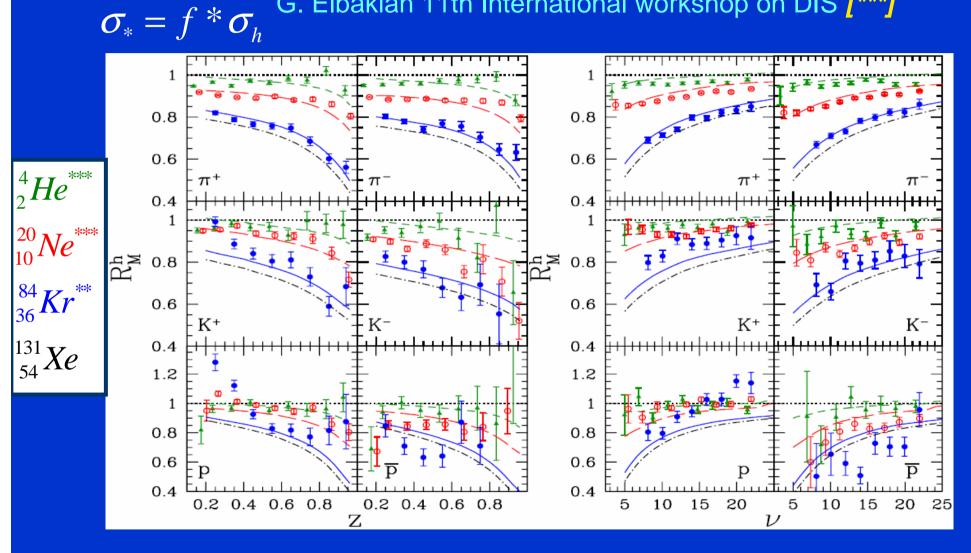


Absorption factor

 Probability to find a hadron outside of the nucleus which has not interacted:

$$\begin{split} N_{A} &= \lim_{y^{i} \to \infty} \int d^{2}b \int_{-\infty}^{\infty} dy \rho_{A}(b, y) P_{h}(y^{i}, y) \\ &= \int d^{2}b \int_{-\infty}^{\infty} dy \rho_{A}(b, y) \int_{y}^{\infty} dx^{i} \int_{y}^{x^{i}} dx \frac{e^{-\frac{x-y}{\langle l^{*} \rangle}}}{\langle l^{*} \rangle} e^{-\sigma_{*}} \int_{x}^{x^{i}} ds A \rho_{A}(s) \\ &\times \frac{e^{-\frac{x^{i}-x}{\langle \Delta l \rangle}}}{\langle \Delta l \rangle} e^{-\sigma_{h}} \int_{x^{i}}^{\infty} ds A \rho_{A}(s) \end{split}$$

Prehadron and Hadron-Production probabilities (at HERMES energies for Kr target)



 Hadrons are mostly produced outside of the nucleus
 ⇒Attenuation dominated by pre-hadron absorption

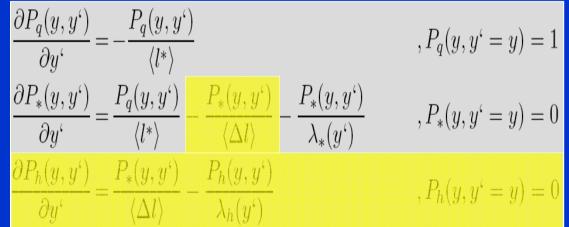
29.09.05

Comparison with HERMES data

HERMES Coll., A. Airapetian et al. Phys. Lett B 577 (2003) [**], G. Elbakian 11th International workshop on DIS [***]

29.09.05

A dependence of SIDIS on nuclei (hep-ph/0502072, NPA...)


A dependence Review

- <u>Absorption models</u>: attenuation \propto in medium path length \Rightarrow $1 - R_M = c A^{1/3}$
- Energy loss models: attenuation \propto in medium path length squared \Rightarrow $1 - R_M = c A^{2/3}$
- But!!!

A dependence analytical investigation In order to obtain analytical results, make the following restrictions:

- Attenuation is dominated by pre-hadron absorption
 - ⇒ A prehadron which survives will yield a hadron with high probability
 - \Rightarrow Neglect hadrons in the evolution
- Consider nucleus as a hard sphere
- Neglect attenuation in Deuterium $\Rightarrow R_M \approx N_A$

• Evolution equations without hadrons:

Attenuation (hard sphere nucleus/neglecting D):

$$1 - R_M = 1 - \frac{\pi \rho_0}{A} \int_{0}^{R^2} db^2 \int_{-R(b)}^{R(b)} dy \int_{y}^{\infty} dx \frac{e^{-\frac{x-y}{\langle l^* \rangle}}}{\langle l^* \rangle} e^{-\rho_0 \sigma_*} \int_{x}^{\infty} ds \Theta(R(b) - |s|)$$
$$= \frac{\pi \rho_0}{2A} \langle l^* \rangle^3 \int_{0}^{2R/\langle l^* \rangle} dtt \int_{0}^{t} dr \int_{0}^{r} du e^{-u} \left[1 - e^{\frac{\langle l^* \rangle}{\lambda_0}(u-r)} \right]$$

A dependence of SIDIS on nuclei (hep-ph/0502072, NPA...)

29.09.05

• Expansion in powers of u:

$$a = \langle l^* \rangle / \lambda_0 \quad b = 2R / \langle l^* \rangle \quad R = r_0 A^{1/3}$$

$$1 - R_M = \frac{1}{10} ab^2 - \frac{1}{48} (1+a)ab^3 + \frac{1}{280} (1+a+a^2)ab^4 + \mathcal{O}[b^5]$$

 \Rightarrow leading order term $\propto A^{2/3}$

!!! contrary to common
 expectation !!!

• Expansion is not good for large values of a

and $b \Rightarrow$ perform a fit to the innermost integral

$$\int_{0}^{r} du e^{-u} \left[1 - e^{a(u-r)} \right] = \frac{1 - e^{-ar} - a\left(1 - e^{-r}\right)}{1 - a} \approx 1 - e^{-war^2} \qquad w = 0.19$$

29.09.05

• This improves the convergence over the whole z

range:
$$\begin{array}{rl} 1 - R_M &= \frac{1}{5}wab^2 - \frac{3}{70}(wab^2)^2 + \mathcal{O}[(wab^2)^3] \\ &= c_1 A^{2/3} + c_2 A^{4/3} + \mathcal{O}[A^2] \ . \end{array}$$

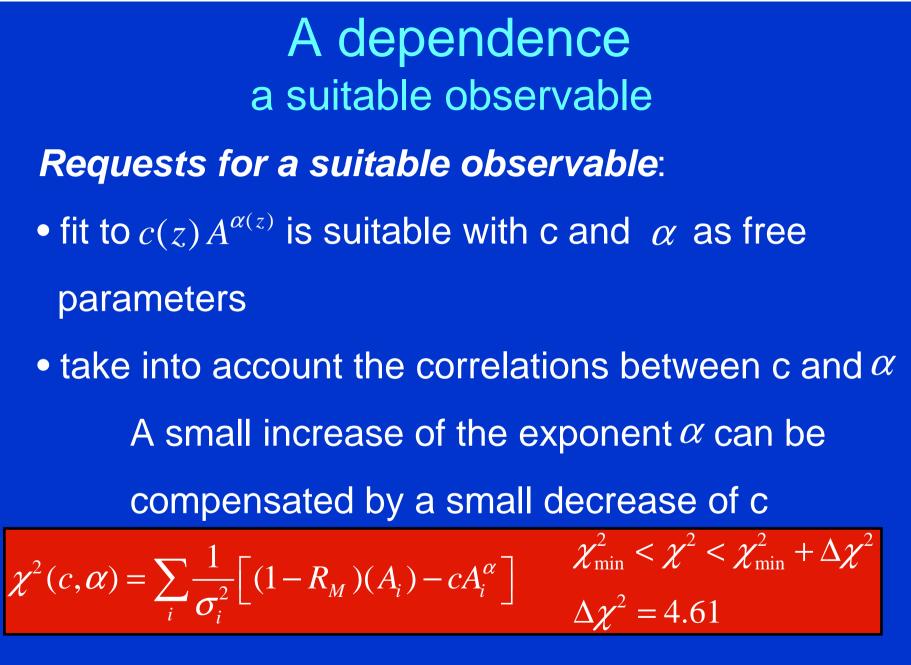
• Small value of $w \Rightarrow$ rapid convergence

z	$\langle l^h(z) \rangle$ [fm]	c_1	c_2	Ā
.25	10.15	0.0095	-0.000096	980
.45	11.72	0.0103	-0.000114	860
.65	12.34	0.0142	-0.000217	530
.85	11.98	0.0314	-0.001059	160

• The series converges very quickly $\Rightarrow 1 - R_M = c A^{\alpha}$

29.09.05

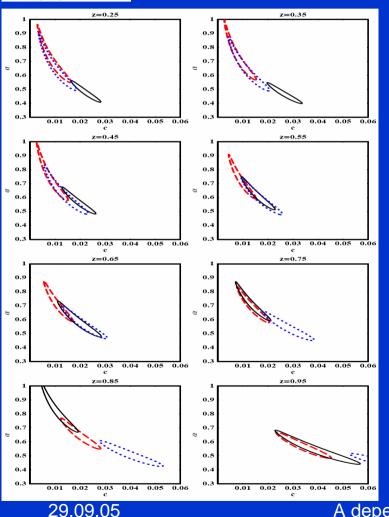
Results from theory discussion:


- attenuation is proportional to $A^{2/3}$ in leading order
- higher order terms become important for large A and z
- a lot of information on absorption dynamics is contained in c
- the strong dependence of c on z needs to be

taken into account when analyzing data

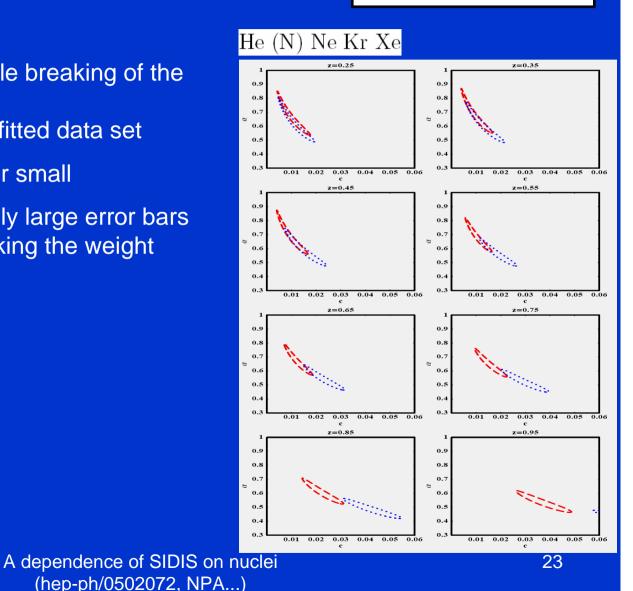
29.09.05

A dependence a suitable observable **Requests for a suitable observable**: • fit to $c(z) A^{\alpha(z)}$ is suitable with c and α as free parameters • take into account the correlations between c and α A small increase of the exponent α can be compensated by a small decrease of c \Rightarrow Perform a $c A^{\alpha}$ power law fit and present the result as confidence ellipses


29.09.05

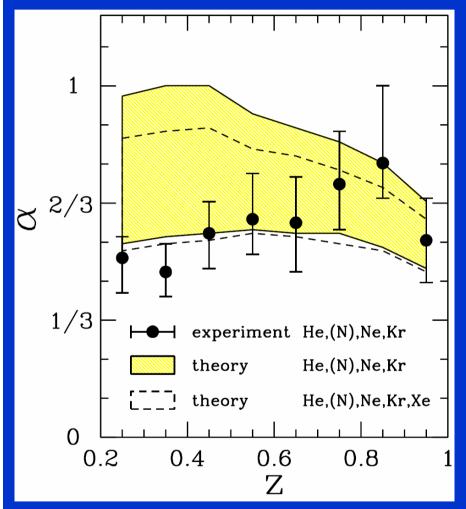
29.09.05

exp. data pure absorption model abs. + rescaling model


He (N) Ne Kr

- Theory points originate from computation with realistic nuclear densities + 2 step hadronization process
- Theoretical uncertainty = 6% of attenuation
- N only included for z>= 0.55
 two parameter fit to three "data" points for z <0.55
- pure absorption model points follow the trend shown by the experimental data for z>=0.55
- For increasing z the agreement of the abs.
 + rescaling model decreases
 - ⇒ THIS SHOWS THE POWER OF THE PROPOSED ANALYSIS

- To investigate the possible breaking of the power law: Include Xe data into the fitted data set
- Observed impact is rather small
- This is due to the relatively large error bars of the Xe attenuation making the weight small


exp. data pure absorption model abs. + rescaling model

Centroids of the confidence ellipsoids

	Experiment		Theory		Theory	
	He (N) Ne Kr		He (N) Ne Kr		He (N) Ne Kr Xe	
z	$c [10^{-2}]$	α	$c \ [10^{-2}]$	α	$c [10^{-2}]$	α
.25	$2.1 \pm {0.8 \atop 0.5}$	$0.51 \pm {0.06 \atop 0.10}$	$0.7 \pm {0.9 \atop 0.5}$	$0.75 \pm {0.22 \atop 0.20}$	$0.9 \pm {}^{0.9}_{0.4}$	$0.70 \pm {0.15 \atop 0.17}$
.35	$2.6 \pm {0.8 \atop 0.6}$	$0.47 \pm {0.08 \atop 0.07}$	$0.7 \pm {}^{0.9}_{0.4}$	$0.77 \pm {0.23 \atop 0.20}$	$0.8~\pm~^{0.9}_{0.4}$	$0.72 \pm {0.15 \atop 0.17}$
.45	$1.9 \pm {}^{0.7}_{0.4}$	$0.58 \pm {0.09 \atop 0.10}$	$0.7 \pm {0.8 \atop 0.4}$	$0.78 \pm {0.22 \atop 0.20}$	$0.8 \pm {0.9 \atop 0.4}$	$0.73 \pm {0.15 \atop 0.17}$
.55	$1.6 \pm {0.7 \atop 0.6}$	$0.62 \pm {0.13 \atop 0.10}$	$0.8 \pm {0.7 \atop 0.4}$	$0.76 \pm {0.16 \atop 0.17}$	$0.9\pm{}^{0.7}_{0.4}$	$0.71~\pm~^{0.11}_{0.13}$
.65	$1.8 \pm {}^{1.0}_{0.7}$	$0.61 \pm {0.13 \atop 0.14}$	$1.0\pm{}^{0.8}_{0.4}$	$0.74 \pm {0.14 \atop 0.16}$	$1.1 \pm {0.8 \atop 0.4}$	$0.70~\pm~^{0.10}_{0.13}$
.75	$1.3 \pm {}^{0.8}_{0.6}$	$0.72 \pm {0.15 \atop 0.13}$	$1.2 \pm {}^{0.9}_{0.5}$	$0.73 \pm {0.11 \atop 0.15}$	$1.4 \pm {0.9 \atop 0.4}$	$0.68 \pm {0.08 \atop 0.13}$
.85	$1.2 \pm {}^{0.5}_{0.7}$	$0.78 \pm {0.22 \atop 0.10}$	$1.7 \pm \frac{1.2}{0.5}$	$0.69 \pm {0.09 \atop 0.15}$	$1.9 \pm \frac{1.2}{0.5}$	$0.65 \pm {0.06 \atop 0.12}$
.95	$3.6 \pm \frac{2.1}{1.3}$	$0.56 \pm {0.12 \atop 0.12}$	$3.1 \pm {}^{1.5}_{0.8}$	$0.60 \pm {0.07 \atop 0.12}$	$3.3 \pm {}^{1.6}_{0.7}$	$0.57 \pm {0.05 \atop 0.10}$

29.09.05

Alpha versus z:

- Experimental data as well as absorption model compatible with $A^{2/3}$
- Xe shifts theory band to lower values of α
- Within error bars no definite
 - statement about power-law breaking possible

Conclusions:

- Absorption model describes data-except p-production
- $\sigma_* = 2/3\sigma_h$
- The A-dependence of our absorption model shows a leading order $\propto A^{2/3}$ behavior contrary to common expectation
- Proposed analysis is a promising tool in order to distinguish several theoretical models
- Not only our absorption model shows the $A^{2/3}$ behavior (see hep-ph/0502072)