# Description of the HERMES Data on Hadronization in Nuclear Medium in Framework of the String Model 

## L.Grigoryan

## Yerevan Physics Institute

## ECT*, September 29, 2005

- Introduction
- The TSM and ITSM
- $Q^{2}$ dependence
- Results for Fragmentation
- Double Hadron Attenuation
- Attenuation of Protons
- Conclusions


## Theoretical Models

- Rescaling Model
A.Accardi, V.Muccifora, H.J.Pirner et al.
- Gluon Bremsstrahlung Model
B.Kopeliovich, J.Nemchik, B.Zakharov et al.
- Energy Loss Model
X.Guo, M.Gyulassy, X.-N.Wang et al.
- FSI by means of BUU Transport Model
W.Cassing, T.Falter, K.Gallmeister et al.
- String Model
B.Andersson et al., Phys.Rep.97(1983)31
A.Bialas, M.Gyulassy, Nucl.Phys. B291(1987)793
J.Czyzewski and P.Sawicki, Z.Phys. C56(1992)493
J.Ashman et al., Z.Phys. C52(1991)1
N.Akopov, L.Grigoryan, Z.Akopov, hep-ph/0409359 (will be published soon in EPJ C)


Space-time structure of hadronization in the string model. The two constituents of the hadron are produced at different points. The constituents of the hadron $h$ are created at the points $P_{2}$ and $P_{3}$. They meet at $\mathrm{H}_{3}$ to form the hadron.

## The TSM and ITSM

## The Two-Scale Model

J.Ashman et al., Z.Phys. C52( 1991) 1

The TSM is a purely absorption string model. Basic formula is:

$$
R_{A}=2 \pi \int_{0}^{\infty} b d b \int_{-\infty}^{\infty} d x \rho(b, x)\left[1-\int_{x}^{\infty} d x^{\prime} \sigma^{s t r}(\Delta x) \rho\left(b, x^{\prime}\right)\right]^{A-1}
$$

$b, x$-coordinates of the DIS point,
$\rho(b, x)$ - nuclear density function,
$x^{\prime}$ - longitudinal coordinate of the string-nucleon interaction point, $A$ - atomic mass number, $\sigma^{s t r}(\Delta x)$ - the string-nucleon cross section on distance $\Delta x=x^{\prime}-$ $x$ from DIS point

$$
\begin{gather*}
\sigma^{s t r}(\Delta x)=\theta\left(\tau_{c}-\Delta x\right) \sigma_{q}+\theta\left(\tau_{h}-\Delta x\right) \theta\left(\Delta x-\tau_{c}\right) \sigma_{s}+  \tag{1}\\
+\theta\left(\Delta x-\tau_{h}\right) \sigma_{h}
\end{gather*}
$$

where $\sigma_{q}, \sigma_{s}$ and $\sigma_{h}$ are the cross sections for interaction with the nucleon of the initial string, open string and final hadron respectively.
$\tau_{c}$ and $\tau_{h}$ are constituent and yo-yo formation times.

$$
\tau_{h}-\tau_{c}=z \nu / \kappa
$$

where $z=E_{h} / \nu, \kappa$ - string tension (string constant). Two expressions for $\tau_{c}$ are using:
for hadrons containing leading quark

$$
\begin{equation*}
\tau_{c}=(1-z) \nu / \kappa \tag{2}
\end{equation*}
$$

B.Kopeliovich, Phys.Lett. B243(1990) 141
in framework of the standard Lund model

$$
\begin{equation*}
\tau_{c}=\left[\frac{\ln \left(1 / z^{2}\right)-1+z^{2}}{1-z^{2}}\right] \frac{z \nu}{\kappa} \tag{3}
\end{equation*}
$$

In calculations instead of approximate expression (3) we use the precise expression for $\tau_{c}$ from

## A.Bialas, M.Gyulassy, Nucl.Phys. B291(1987) 793

In our calculations we also take into account absorption in deuterium, and use the ratio $R_{M}^{h}=R_{A} / R_{D}$.


a) The behavior of the string-nucleon cross section as a function of distance in the TSM. b) The same as in a) for ITSM taking into account more realistic smoothly increasing string-nucleon cross section.

Some models for the shrinkage-expansion mechanism were applied. We used four versions for the definition of $\sigma^{s t r}$.
G.Farrar et al., Phys.Rev.Lett. 61 (1988) 686

The first version of $\sigma^{s t r}$ definition is based on quantum diffusion:

$$
\begin{aligned}
& \sigma^{s t r}(\Delta x)=\theta(\tau-\Delta x)\left[\sigma_{q}+\left(\sigma_{h}-\sigma_{q}\right) \Delta x / \tau\right]+ \\
&+\theta(\Delta x-\tau) \sigma_{h}
\end{aligned}
$$

where $\tau=\tau_{c}+\mathrm{c} \Delta \tau, \Delta \tau=\tau_{h}-\tau_{c}$.
The second version follows from naive parton case:

$$
\begin{gather*}
\sigma^{s t r}(\Delta x)=\theta(\tau-\Delta x)\left[\sigma_{q}+\left(\sigma_{h}-\sigma_{q}\right)(\Delta x / \tau)^{2}\right]+  \tag{5}\\
+\theta(\Delta x-\tau) \sigma_{h}
\end{gather*}
$$

Two other expressions for $\sigma^{s t r}$ were also used:

$$
\begin{equation*}
\sigma^{s t r}(\Delta x)=\sigma_{h}-\left(\sigma_{h}-\sigma_{q}\right) \exp \left(-\frac{\Delta x}{\tau}\right) \tag{6}
\end{equation*}
$$

and:

$$
\begin{equation*}
\sigma^{s t r}(\Delta x)=\sigma_{h}-\left(\sigma_{h}-\sigma_{q}\right) \exp \left(-\left(\frac{\Delta x}{\tau}\right)^{2}\right) \tag{7}
\end{equation*}
$$

## $Q^{2}$-dependence

QCD predicts the $Q^{2}$-dependence of string-nucleon cross section in the form:

$$
\sigma_{q}\left(Q^{2}\right) \sim 1 / Q^{2} ; \quad \sigma_{s}\left(Q_{\tau_{c}}^{2}\right) \sim 1 / Q_{\tau_{c}}^{2}
$$

Using this prediction we can express the cross section for the initial string as

$$
\sigma_{q}\left(Q^{2}\right)=\left(\hat{Q}^{2} / Q^{2}\right) \sigma_{q}\left(\hat{Q}^{2}\right)
$$

In the same way the expression for the open string cross section can be written as:

$$
\sigma_{s}\left(Q_{\tau_{c}}^{2}\right)=\left(\hat{Q}_{\tau_{c}}^{2} / Q_{\tau_{c}}^{2}\right) \sigma_{s}\left(\hat{Q}_{\tau_{c}}^{2}\right)
$$

where $Q_{\tau_{c}}^{2}=Q^{2}\left(\tau_{c}\right)$ is the virtuality of the string in the time interval $\tau_{c}$ after DIS. In order to estimate the ratio of $\hat{Q}_{\tau_{c}}^{2} / Q_{\tau_{c}}^{2}$ we adopt the scheme supposing that during time $t$ the quark decreases its virtuality from the initial $Q^{2}$ to the value $Q^{2}(t)$ as follows

$$
Q^{2}(t)=\nu(t) \frac{Q^{2}}{\nu(t)+t Q^{2}}
$$

where $\nu(t)=\nu-\kappa t$.

## Results for Fragmentation

For $\kappa$ value determined by the Regge trajectory slope was used:

$$
\kappa=1 /\left(2 \pi \alpha_{R}^{\prime}\right)=1 G e V / f m
$$

The Nuclear Density Functions (NDF) were used as follows: for deuterium the Hard Core Deuteron Wave Functions were used

$$
\text { R.V.Reid, Annals of Physics } 50 \text { (1968) } 411
$$

For ${ }^{4} \mathrm{He}$ and ${ }^{14} \mathrm{~N}$, the Shell Model was used
L.Elton, "Nuclear Sizes" Oxford University Press, 1961, p. 34

$$
\rho(r)=\rho_{0}\left(\frac{4}{A}+\frac{2}{3} \frac{(A-4)}{A} \frac{r^{2}}{r_{A}^{2}}\right) \exp \left(-\frac{r^{2}}{r_{A}^{2}}\right),
$$

where $r_{A}=1.31 \mathrm{fm}$ for ${ }^{4} \mathrm{He}$ and $r_{A}=1.67 \mathrm{fm}$ for ${ }^{14} \mathrm{~N}$.
For ${ }^{20} \mathrm{Ne},{ }^{84} \mathrm{Kr}$ and ${ }^{131} \mathrm{Xe}$ the Woods-Saxon distribution was used

$$
\rho(r)=\rho_{0} /\left(1+\exp \left(\left(r-r_{A}\right) / a\right)\right)
$$

These three sets of NDF's were used for the fitting with the following corresponding parameters:

First set (A.Bialas et al., Phys.Lett. B133 (1983) 241)

$$
\begin{equation*}
a=0.54 \mathrm{fm} \quad r_{A}=\left(0.978+0.0206 A^{1 / 3}\right) A^{1 / 3} \mathrm{fm} \tag{8}
\end{equation*}
$$

Second set (A.Bialas et al., Nucl.Phys. B291 (1987) 793)

$$
\begin{equation*}
a=0.54 \mathrm{fm} \quad r_{A}=\left(1.19 A^{1 / 3}-\frac{1.61}{A^{1 / 3}}\right) \mathrm{fm} \tag{9}
\end{equation*}
$$

Third set (A.Capella et al., Phys.Rev. D18 (1977) 3357)

$$
\begin{equation*}
a=0.545 \mathrm{fm} \quad r_{A}=1.14 A^{1 / 3} \mathrm{fm} \tag{10}
\end{equation*}
$$

where the values of $\rho_{0}$ are determined from the normalization condition:

$$
\int d^{3} r \rho(r)=1
$$

The fit was performed based on published HERMES data for nuclear attenuation of $\pi^{+}$and $\pi^{-}$mesons on nitrogen and krypton nuclei:
A.Airapetian et al., Eur.Phys.J. C20 (2001) 479
A.Airapetian et al., Phys.Lett. B577 (2003) 37

For $\tau_{c}$ two expressions (2)-(3) were used. For $\sigma^{s t r}(\Delta x)$ one expression (1) in TSM and four different expressions (4)-(7) in ITSM were used. For NDF of krypton three different sets of parameters (8)-(10) were used. The values of $\sigma_{h}$ (hadron-nucleon inelastic cross section) used in the fit were set equal to: $\sigma_{\pi^{+}}=\sigma_{\pi^{-}}=20 \mathrm{mb}$. Two parameters were determined from the fit. In case of TSM and ITSM they are $\sigma_{q}, \sigma_{s}$ and $\sigma_{q}, c$, respectively. The values of $\sigma_{h}$ that were used in calculations are as follows: $\sigma_{\pi^{0}}=\sigma_{K^{-}}=20 \mathrm{mb}, \sigma_{K^{+}}$ $=14 \mathrm{mb}$ and $\sigma_{\bar{p}}=42 \mathrm{mb}$. Results of fit are presented in Table 1 for TSM version, and in Tables 2-3 for ITSM version. The curves correspond to the TSM and ITSM model calculations with the best set of parameters are presented on subsequent three figures.


Hadron multiplicity ratio $R_{M}^{\pi}$ of charged pions for ${ }^{14} \mathrm{~N}$ and ${ }^{84} \mathrm{Kr}$ nuclei as a function of $\nu$ (left panel) and $z$ (right panel). The solid curves correspond to the ITSM. Minimum value of $\chi^{2}$ (best fit) is obtained for $\sigma^{s t r}$ in form (4) and $\tau_{c}$ in form (2), at the values of parameters: $\sigma_{q}=0.46 \mathrm{mb}, c=0.32$. The dashed curves correspond to the TSM. Now best fit correspond $\tau_{c}$ in form (3), at the values of parameters: $\sigma_{q}=4.2 \mathrm{mb}, \sigma_{s}=16.6 \mathrm{mb}$. In both versions best fit is obtained for NDF (8) for ${ }^{84} \mathrm{Kr}$. These data were included in fit and curves were obtained in a result of fit.


Hadron multiplicity ratio $R_{M}^{h}$ of different species of hadrons produced on ${ }^{84} \mathrm{Kr}$ target as a function of $\nu$ (left panel) and $z$ (right panel). These data did not included in fit. The curves are calculated with the values of parameters corresponding to the best fit.


The ratio $R_{M}^{h}$ for charged hadrons for ${ }^{63} \mathrm{Cu}$ as a function of $\nu$ (upper panel) and $z$ (lower panel). The solid, dashed and dotted curves correspond to three sets of parameters with the minimal values of $\chi^{2} /$ d.o.f. in case of ITSM (see Tables 2 and 3): solid - NDF (8), $\sigma^{s t r}$ (4), $\tau_{c}(2), \sigma_{q}=0.46 \mathrm{mb}, \mathrm{c}=0.32, \chi^{2} /$ d.o.f. $=1.4$; dashed - NDF (9), $\sigma^{\text {str }}$ (5), $\tau_{c}$ (3), $\sigma_{q}=1.0 \mathrm{mb}, c=0.17, \chi^{2} /$ d.o.f. $=1.5$; dotted NDF (8), $\sigma^{s t r}$ (7), $\tau_{c}$ (3), $\sigma_{q}=1.5 \mathrm{mb}, \mathrm{c}=0.103, \chi^{2} /$ d.o.f. $=1.5$. The dashed-dotted curves correspond to the best set of parameters in case of TSM (see Table 1): NDF (8), $\tau_{c}(3), \sigma_{q}=4.2 \mathrm{mb}, \sigma_{s}=16.6 \mathrm{mb}$, $\chi^{2} /$ d.o.f. $=2.3$.

| $\tau_{c}(2)$ |  |  |  | $\tau_{c}(3)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NDF | $\sigma_{q}(\mathrm{mb})$ | $\sigma_{s}(\mathrm{mb})$ | $\chi^{2} /$ d.o.f. | $\sigma_{q}(\mathrm{mb})$ | $\sigma_{s}(\mathrm{mb})$ | $\chi^{2} /$ d.o.f. |
| $(8)$ | $5.3 \pm 0.01$ | $17.1 \pm 0.08$ | 4.3 | $4.2 \pm 0.01$ | $16.6 \pm 0.07$ | 2.3 |
| $(9)$ | $5.5 \pm 0.01$ | $17.7 \pm 0.08$ | 4.5 | $4.3 \pm 0.01$ | $17.3 \pm 0.07$ | 2.4 |
| $(10)$ | $5.8 \pm 0.01$ | $18.3 \pm 0.08$ | 4.8 | $4.4 \pm 0.01$ | $18.1 \pm 0.07$ | 2.6 |

Table 1: The TSM: the best values for the fitted parameters and $\chi^{2} /$ d.o.f. $\left(\mathrm{N}_{\text {exp }}=58, \mathrm{~N}_{p a r}=2\right)$.

| $\sigma^{s t r}(4)$ |  |  |  | $\sigma^{s t r}(5)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NDF | $\sigma_{q}(\mathrm{mb})$ | $c$ | $\chi^{2} /$ d.o.f. | $\sigma_{q}(\mathrm{mb})$ | $c$ | $\chi^{2} /$ d.o.f. |
| $(8)$ | $0.46 \pm 0.02$ | $0.32 \pm 0.03$ | 1.4 | $3.5 \pm 0.01$ | $0.23 \pm 0.002$ | 1.9 |
| $(9)$ | $0.62 \pm 0.01$ | $0.31 \pm 0.01$ | 1.7 | $3.7 \pm 0.01$ | $0.22 \pm 0.02$ | 2.1 |
| $(10)$ | $0.78 \pm 0.02$ | $0.30 \pm 0.03$ | 1.8 | $3.9 \pm 0.01$ | $0.21 \pm 0.003$ | 2.3 |


| $\sigma^{s t r}(6)$ |  |  |  | $\sigma^{s t r}(7)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NDF | $\sigma_{q}(\mathrm{mb})$ | $c$ | $\chi^{2} /$ d.o.f. | $\sigma_{q}(\mathrm{mb})$ | $c$ | $\chi^{2} /$ d.o.f. |
| $(8)$ | $1.1 \pm 0.01$ | $0.15 \pm 0.03$ | 2.1 | $3.7 \pm 0.01$ | $0.15 \pm 0.02$ | 2.3 |
| $(9)$ | $1.3 \pm 0.02$ | $0.15 \pm 0.03$ | 2.4 | $3.9 \pm 0.01$ | $0.14 \pm 0.02$ | 2.6 |
| $(10)$ | $1.5 \pm 0.02$ | $0.14 \pm 0.03$ | 2.8 | $4.1 \pm 0.01$ | $0.14 \pm 0.02$ | 2.9 |

## Table 2: The ITSM: $\tau_{c}(2)$. The best values for the fitted parameters and $\chi^{2} /$ d.o.f. $\left(\mathrm{N}_{\text {exp }}=58, \mathrm{~N}_{p a r}=2\right)$.

| $\sigma^{s t r}(4)$ |  |  |  | $\sigma^{s t r}(5)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NDF | $\sigma_{q}(\mathrm{mb})$ | $c$ | $\chi^{2} /$ d.o.f. | $\sigma_{q}(\mathrm{mb})$ | $c$ | $\chi^{2} /$ d.o.f. |
| $(8)$ | $0.0 \pm 0.001$ | $0.56 \pm 0.02$ | 4.6 | $0.97 \pm 0.01$ | $0.17 \pm 0.002$ | 1.6 |
| $(9)$ | $0.0 \pm 0.002$ | $0.53 \pm 0.02$ | 4.3 | $1.0 \pm 0.02$ | $0.17 \pm 0.02$ | 1.5 |
| $(10)$ | $0.0 \pm 0.002$ | $0.49 \pm 0.006$ | 4.0 | $1.1 \pm 0.02$ | $0.16 \pm 0.02$ | 1.6 |


| $\sigma^{s t r}(6)$ |  |  |  | $\sigma^{s t r}(7)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NDF | $\sigma_{q}(\mathrm{mb})$ | $c$ | $\chi^{2} /$ d.o.f. | $\sigma_{q}(\mathrm{mb})$ | $c$ | $\chi^{2} /$ d.o.f. |
| $(8)$ | $0.0 \pm 0.001$ | $0.24 \pm 0.02$ | 3.0 | $1.5 \pm 0.02$ | $0.103 \pm 0.02$ | 1.5 |
| $(9)$ | $0.0 \pm 0.002$ | $0.21 \pm 0.02$ | 2.9 | $1.7 \pm 0.02$ | $0.096 \pm 0.02$ | 1.6 |
| $(10)$ | $0.0 \pm 0.002$ | $0.18 \pm 0.02$ | 2.8 | $1.8 \pm 0.02$ | $0.089 \pm 0.02$ | 1.8 |

Table 3: The ITSM: $\tau_{c}(3)$. The best values for the fitted parameters and $\chi^{2}$ /d.o.f. $\left(\mathrm{N}_{\exp }=58, \mathrm{~N}_{p a r}=2\right)$.

## Conclusions 1

- The HERMES data for $\nu$ - and $z$ - dependencies of NA of $\pi^{+}$and $\pi^{-}$mesons on two nuclear targets ( ${ }^{14} \mathrm{~N}$ and $\left.{ }^{84} \mathrm{Kr}\right)$ were used to perform the fit of the TSM and ITSM.
- The $\chi^{2}$ criterion was used for the first time for such kind of analysis, to perform comparion with the NA data.
- Two-parameter fit demonstrates satisfactory agreement with the HERMES data. Minimum $\chi^{2}$ (best fit) was obtained for the ITSM, including expressions (4) for $\sigma^{s t r}$ and (2) for $\tau_{c}$. The published HERMES data do not give the possibility to make a choice between expressions (4)-(7), as well as to make a distinct preference of definitions (2) or (3) for $\tau_{c}$, because they give close values of $\chi^{2}$.
Preferable NDF's are set (8) and (9).
- More precise data that is expected from HERMES will provide essentially better conditions for the choice of preferable version of the model and preferable expressions for $\sigma^{s t r}$ and $\tau_{c}$.
- In all versions we have obtained that $\sigma_{q} \ll \sigma_{h}$. This indicates that at early stage of hadronization process the Color Transparency takes place.


## Double Hadron Attenuation

## J.Czyzewski, Phys.Rev. C43 (1991) 2426

The semi-inclusive leptoproduction process of two hadrons on nucleus of atomic mass number $A$ is:

$$
l_{i}+A \rightarrow l_{f}+h_{1}+h_{2}+X
$$

The nuclear attenuation ratio for that process is defined as:

$$
R_{M}^{2 h}=2 d \sigma_{A}\left(\nu, Q^{2}, z_{1}, z_{2}\right) / A d \sigma_{D}\left(\nu, Q^{2}, z_{1}, z_{2}\right)
$$

DIS take place at the point $(b, x)$. First constituents arises at the points ( $b, x_{1}$ ) and ( $b, x_{2}$ ). Second constituents at points $\left(b, x_{y 1}\right)$ and ( $b, x_{y 2}$ ).

There are simple connections between these points:

$$
x_{y 1}-x_{1}=z_{1} L \text { and } x_{y 2}-x_{2}=z_{2} L
$$

$L$ is the full hadronization length, $L=\nu / \kappa, \kappa$ is string tension (string constant).


Leptoproduction of two-hadron system from a nuclear target

## Double attenuation ratio can be expressed as

$$
\begin{aligned}
& \quad R_{M}^{2 h} \approx \frac{1}{2} \int d^{2} b \int_{-\infty}^{\infty} d x \int_{x}^{\infty} d x_{1} \int_{x_{1}}^{\infty} d x_{2} \rho(b, x) \\
& {\left[D\left(z_{1}, z_{2}, x_{1}-x, x_{2}-x\right) W_{0}\left(h_{1}, h_{2} ; b, x, x_{1}, x_{2}\right)+\right.} \\
& \left.+D\left(z_{2}, z_{1}, x_{1}-x, x_{2}-x\right) W_{0}\left(h_{2}, h_{1} ; b, x, x_{1}, x_{2}\right)\right]
\end{aligned}
$$

$W_{0}$ is the probability that neither the hadrons $h_{1}, h_{2}$ nor intermediate state leading to their production (initial and open strings) interact inelastically in nuclear matter:

$$
\begin{gathered}
W_{0}\left(h_{1}, h_{2} ; b, x, x_{1}, x_{2}\right)=\left(1-Q_{1}-S_{1}-\left(H_{1}+Q_{2}+S_{2}+H_{2}-\right.\right. \\
\left.\left.-H_{1}\left(Q_{2}+S_{2}+H_{2}\right)\right)\right)^{(A-1)}
\end{gathered}
$$

The probabilities $Q_{1}, Q_{2}, S_{1}, S_{2}, H_{1}, H_{2}$ can be calculated using the general formulae:

$$
P\left(x_{\min }, x_{\max }\right)=\int_{x_{\min }}^{x_{\max }} \sigma_{P} \rho(b, x) d x
$$

## Experimental situation

Recently HERMES obtained for the first time the data on double hadron attenuation.
P.Di Nezza [HERMES Collaboration], J.Phys. G30 (2004) S783

The following double ratio for leading and subleading hadrons has been considered:

$$
R_{M}^{2 h}\left(z_{2}\right)=\left(d^{2} N\left(z_{1}, z_{2}\right) / d N\left(z_{1}\right)\right)_{A} /\left(d^{2} N\left(z_{1}, z_{2}\right) / d N\left(z_{1}\right)\right)_{D}
$$



Double ratio $R_{M}^{2 h}$ as a function of $z_{2}$ with $z_{1}>0.5$. Curves are results of calculations, points are premilinary experimental data of HERMES Collaboration. Only the charge combinations of leading and subleading hadrons: ++, --, +0, 0+, -0, 0-, 00 were included in experimental data. Curves on panels a), c), e) correspond the case of full attenuation of two-hadron system; while curves on panels b), d), f) obeys additional condition that only first produced hadron attenuates (maximal screening).

- String model gives natural and simple mechanism for description of two-hadron attenuation, which allows using the set of parameters obtained for single hadron attenuation, without additional fit satisfactory describe the available experimental data.
- In calculations we used pions only, supposing that contribution of other hadrons in multiplicity is considerably smaller. It will be very useful for us to have data for identified pions.
- Comparison with experimental data for $z_{2}$-dependence show that difference between versions is smaller than experimental errors, consequently, different versions of model can not be distinguished by means of comparison with these data.
- As follows from the results, double ratio has a weak sensitiveness to the mutual screening of hadrons for $z_{2^{-}}$ dependence.
- Theoretical curves satisfactory describes data for nitrogen. For krypton situation is more ambiguous. While three middle points describes satisfactory, two extreme points corresponding lower and higher values of $z_{2}$ describes worse. Possible cause is that model do not contain ingredients, necessary for description of these points. From our point of view, experimental point at $z_{2}=0.09$ is higher than unity, because in nucleus part of subleading hadrons are protons, which copiously produced at small $z$, and in this region have value of NA ratio larger than unity. Concerning point at $z_{2}=0.44$. We suppose considerable contribution from pairs of pions appeared in result of breaking of coherently produced diffractive $\omega$-mesons, which are proportional to $A^{2}$. In result, NA ratio for heavy nuclei raises.
- It is interesting to study also other aspects of two-hadron production in nuclear medium. For instance we propose to analyse the $\nu$-dependence integrated over $z_{1}$ and $z_{2}$.

