# Retardation effect for heavy parton collisional energy loss in QGP.

- Motivation
- Collisional energy loss in stationnary regime
- Retardation effect; main results
- Radiation
- Conclusion & Perspectives

Pol-Bernard Gossiaux work done with Stéphane Peigné & Thierry Gousset SUBATECH (Nantes) hep-ph/0509185

# ...collisional energy loss...

Recent papers advocating the possible role of this mechanism for partons of moderate energy: Dutt Mazumder et al (Phys.Rev. D71 (2005) 094016) / Mustafa et al (Phys.Rev. C72 (2005) 014905 )/ Gay Ducati et al (hep-ph/0506241) /

But not the main stream



due to colinear divergences

Usual QGP: no quasi bound state, at rest, static, « confined » over some extansion L<sub>plasma</sub> ... (Boring) heavy parton collisional energy loss in QGP.

Nearly everything is known; Braaten & Thoma (91)





Figure taken from Mustafa et al (Phys.Rev. C72 (2005) 014905)



Physically reasonable, but HOW BIG?

# Retardation effect for heavy parton collisional energy loss in QGP.

- Motivation
- Collisional energy loss in stationnary regime
- Retardation effect; main results
- Radiation
- Conclusion & Perspectives

CEL in stationnary regime.

Assume pQCD regime at high temperature: g<<1 and ordering

$$\frac{1}{M} << r = \frac{1}{T} << \frac{1}{q^*} << m \approx \frac{1}{gT} << \lambda \approx \frac{1}{g^2 T}$$



Heavy quark probes the medium via virtual gluon of momentum *k* 

Zone I: *k*>*q*\* : hard; close collisions; individual; incoherent.

-Zone II: *k*<q\*: soft; far collisions; collective; coherent; macroscopic.

CEL in stationnary regime: close collisions.

Bjorken (82) evaluated this contribution using kinetic theory.



From rate to energy loss :

$$\frac{dE}{dx} = \int \frac{d\Gamma(E',E)}{dE'} \times \frac{E'-E}{v} dE' = \frac{2}{3} \alpha m_D^2 \ln\left(\frac{\sqrt{ET}}{q^*}\right) \quad \text{for } v \approx 1.$$
IR divergent

CEL in stationnary regime: far collisions.

Will embed most of the retardation effect.

First evaluated in stationnary regime by Braaten & Thoma (82) following Weldon (83):  $\Gamma = -(1-n(E))/2E \times tr[(P.\gamma+M) Im(\Sigma)]$ 



Quite general relation : includes the soft collisions (k<q\*) as well, provided one takes the full gluon propagator  $\Pi$ :

CEL in stationnary regime: far collisions (II).



For k>q\*: through kinetic expressions

For k<q\*: evaluate the self energy  $\Sigma$  with HTL ressumation for  $\Pi$  (consistent with collective polarization)... Imaginary time formalism.

Legitimate as both contributions are separately gauge invariant.

CEL in stationnary regime: far collisions (III).

Results at the logarithmic accuracy:



# Far collisions: alternative formulation

Maxwell's Equations with appropriate dielectric functions (collective response of the medium in linear response approx.) lead to the same result for Energy loss.

Easy strategy: evaluate induced chromoelectric field (medium polarization Eind and the Lorentz force of this field on the heavy parton / external current)

© Easy to generalize for non stationnary phenomena (heavy parton produced inside the QGP)... better suited to discuss physics.

 $\otimes$  Misses some part of the hard dynamics... which plays little role for retardation  $\otimes$ .

N.B.: L.R.  $\Rightarrow$  trivial color structure of dielectric functions.

Far collisions: alternative formulation (II)

Maxwell equations in Fourier space  $(\omega, k) \Rightarrow$ 

$$\mathcal{E}_L \vec{E}_L + (\mathcal{E}_T - k^2 / \omega^2) \vec{E}_T = \frac{4\pi}{i\omega} (\vec{j}_L + \vec{j}_T)$$

With  $\varepsilon L$  and  $\varepsilon T$ : dielectric functions of the plasma

$$\varepsilon_L(k,\omega) = 1 + \prod_L(\omega/k)/k^2$$
;  $\varepsilon_T(k,\omega) = 1 - \prod_T(\omega/k)/\omega^2$ 

(Polarization  $\Pi$  taken in H.T.L approximation)

 $\vec{j}_{L}(\vec{j}_{T})$ : longitudinal (transverse) projection of the current on  $\vec{k}$ 

$$\vec{E}_{ind}(\vec{k},\omega) = \frac{4\pi}{i} \left[ \frac{k^2}{k^2 + \Pi_L} \times \frac{\vec{j}_L}{\omega} + \frac{\omega}{\omega^2 - k^2 + \Pi_T} \times \vec{j}_T \right]_{ind} = 4i\pi \left[ k^2 \Delta_L \times \frac{\vec{j}_L}{\omega} + \omega \Delta_T \times \vec{j}_T \right]_{ind}$$
Substract the vacuum value gluon propagator HTL

#### Far collisions: alternative formulation (III)

Fourier back and integrate the Lorentz force up to t=L/v:

$$-\Delta E(L) = i \sum_{a} \int \frac{d^{3}k}{4\pi^{3}} \int_{-\infty}^{+\infty} d\omega \left[ \frac{k^{2}}{k^{2} + \Pi_{L}} \frac{\vec{j}_{L,a}(K)}{\omega} + \frac{\omega}{\omega^{2} - k^{2} + \Pi_{T}} \vec{j}_{T,a}(K) \right]_{ind} \cdot \int_{0}^{L/v} dt \ e^{-iK\cdot V t} \ q_{a} \ \vec{v}(t)$$
  
Special case of stationnary current:  $j_{a}^{\mu}(t,\vec{x}) = q_{a}V^{\mu}\delta^{3}(\vec{x}-\vec{v}t)$  with  $V^{\mu} = (1,\vec{v})$   
$$\Rightarrow \quad j_{a}^{\mu}(K) = 2\pi \ q_{a}V^{\mu} \ \delta(K\cdot V) = 2\pi \ q_{a}V^{\mu} \ \delta(\omega-\vec{k}\cdot\vec{v}) = L/V$$
  
$$\frac{-\Delta E(L)}{C_{R}\alpha_{S}L} = \underbrace{i}_{V} \int \frac{d^{3}k}{2\pi^{2}} \int_{-\infty}^{+\infty} d\omega \left[ \frac{k^{2}}{k^{2} + \Pi_{L}} \frac{v_{L}^{2}(K)}{\omega} + \frac{\omega}{\omega^{2} - k^{2} + \Pi_{T}} v_{T}^{2}(K) \right]_{ind} \delta(\omega-\vec{k}\cdot\vec{v})$$

Only imaginary part contributes

N.B.: « induced » not really needed

# Far collisions: alternative formulation (IV)



In stationnary regime: Only the  $Im(\varepsilon)$  contributes (ok); collective modes do not get excited; no Cherenkov radiation.

# Retardation effect for heavy parton collisional energy loss in QGP.

- Motivation
- Collisional energy loss in stationnary regime
- Retardation effect; main results
- Radiation
- Conclusion & Perspectives

### Retardation effect: model for partonic current



For partons produced at t=0

$$j_0^{\mu a}(K) = iq^a \left( \frac{V_1^{\mu}}{K \cdot V_1 + i\eta} - \frac{V_2^{\mu}}{K \cdot V_2 + i\eta} \right)$$
  
with  $V_1 = (1, \vec{v}_1)$  and  $V_2 = (1, \vec{v}_2)$ 

Satisfies current conservation  $K \cdot V = 0$ 

Simplifying assumption:  $v_2=0 \Rightarrow V_2=(1,0)$  and  $V_1=(1, \vec{v})$ 

Only **one** parton contributes to  $\vec{j}$ , but the system is in fact color neutral.

### Retardation effect: generalization of $\Delta E$

$$-\Delta E(L) = i \sum_{a} \int \frac{d^{3}k}{4\pi^{3}} \int_{-\infty}^{+\infty} d\omega \left[ \frac{k^{2}}{k^{2} + \Pi_{L}} \frac{j_{Ld}(K)}{\omega} + \frac{\omega}{\omega^{2} - k^{2} + \Pi_{T}} \frac{j}{p_{d}(K)} \right]_{ind} \cdot q_{d} \vec{v} \int_{0}^{V} \frac{d}{\psi} e^{i(KVI)} KVI = 0$$
  
$$\frac{-\Delta E(L)}{C_{R}\alpha_{s}} = -iv^{2} \int \frac{d^{3}\vec{k}}{4\pi^{3}} \int_{-\infty}^{\infty} \frac{d\omega}{\omega} \left[ k^{2} \cos^{2} \theta \Delta_{L}(\omega, k) + \omega^{2} \sin^{2} \theta \Delta_{T}(\omega, k) \right]_{ind}$$
  
$$complex \longrightarrow \left\{ \begin{array}{c} 1 - e^{-i(\omega - kv \cos \theta) L/v} \\ (\omega - kv \cos \theta) & \omega - kv \cos \theta + i\eta \end{array} \right\}$$
  
Cut rent  
Poles Coll modes Coll modes Coll modes Coll modes Coll modes Coll modes Coll mode Col

#### Retardation effect:convergence and scales

Contour integration in lower half-(complex) plane :

$$\frac{-\Delta E(L)}{C_R \alpha_s} = \int \frac{d^3 \vec{k}}{2\pi^2} \left\{ \frac{1 - e^{ikL\cos\theta}}{k^2 + m_D^2} + v^2 \int_{-\infty}^{\infty} \frac{d\omega}{2\pi\omega} \left[ k^2 \cos^2\theta \,\rho_L + \omega^2 \sin^2\theta \,\rho_T \right] \right. \\ \left. \times \operatorname{P}\left( \frac{1}{\omega - kv\cos\theta} \right) \frac{1 - e^{-i(\omega - kv\cos\theta)L/v}}{\omega - kv\cos\theta} \right\}_{\mathrm{ind}}.$$

With the spectral functions :

$$\rho_s(\omega, k) \equiv 2 \operatorname{Im} \Delta_s(\omega + i\eta, k)$$
  
=  $2\pi \operatorname{sgn}(\omega) z_s(k) \delta(\omega^2 - \omega_s^2(k)) + \beta_s(\omega, k) \theta(k^2 - \omega^2)$   
  
Residue Magnitude of the cut

#### Retardation effect: convergence and scales

Contour integration in lower half-(complex) plane :

$$\frac{-\Delta E(L)}{C_R \alpha_s} = \int \frac{d^3 \vec{k}}{2\pi^2} \left\{ \underbrace{\frac{1 - e^{ikL\cos\theta}}{k^2 + m_D^2}}_{\sum k^2 + m_D^2} + v^2 \int_{-\infty}^{\infty} \frac{d\omega}{2\pi\omega} \left[ k^2 \cos^2\theta \rho_L + \omega^2 \sin^2\theta \rho_T \right] \right. \\ \left. \left. \left. \times \mathbf{P} \left( \frac{1}{\omega - kv\cos\theta} \right) \frac{1 - e^{-i(\omega - kv\cos\theta)L/v}}{\omega - kv\cos\theta} \right\}_{\text{ind}} \right\}_{\text{ind}} .$$

 $\rightarrow$  finite constant when L  $\rightarrow \infty$  (due to the induced prescription)

#### Retardation effect: convergence and scales

Contour integration in lower half-(complex) plane :

$$\frac{-\Delta E(L)}{C_R \alpha_s} = \int \frac{d^3 \vec{k}}{2\pi^2} \left\{ \frac{1 - e^{ikL\cos\theta}}{k^2 + m_D^2} + v^2 \int_{-\infty}^{\infty} \frac{d\omega}{2\pi\omega} \left[ k^2 \cos^2\theta \rho_L + \omega^2 \sin^2\theta \rho_T \right] \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{w^2 + m_D^2} + v^2 \int_{-\infty}^{\infty} \frac{d\omega}{2\pi\omega} \left[ k^2 \cos^2\theta \rho_L + \omega^2 \sin^2\theta \rho_T \right] \right\}_{\text{ind}} \cdot \frac{\Delta E(L)}{v} = \int_{k < k_{cut}} \frac{d^3 \vec{k}}{2\pi^2} \left\{ \frac{1 - e^{ikL\cos\theta}}{k^2 + m_D^2} + v^2 \int_{-\infty}^{\infty} \frac{d\omega}{2\pi\omega} \left[ k^2 \cos^2\theta \rho_L + \omega^2 \sin^2\theta \rho_T \right] \right\}_{\text{ind}} \cdot \left[ \left( 2 \frac{\sin^2 \left( (\omega - kv \cos\theta) L/(2v) \right)}{(\omega - kv \cos\theta)^2} - \frac{\pi L}{v} \delta(\omega - kv \cos\theta) \right) + \frac{\pi L}{v} \delta(\omega - kv \cos\theta) \right] \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{v^2 + m_D^2} + \frac{\pi L}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} - \frac{\pi L}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{v^2 + m_D^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} - \frac{\pi L}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{v^2 + m_D^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} - \frac{\pi L}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{v^2 + m_D^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} - \frac{\pi L}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{v^2 + m_D^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} - \frac{\pi L}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} + \frac{1}{v} \delta(\omega - kv \cos\theta) \right\}_{\text{ind}} \cdot \frac{1}{v} \left\{ \frac{1 - e^{ikL\cos\theta}}{(\omega - kv \cos\theta)^2} + \frac{1}{v$$

Brings a 1/k additional factor instead of L  $\Rightarrow$  UV convergent !

Exactly the stationnary E loss log divergent in UV

Retardation effect: convergence and scales (II)

<u>Conclusion</u>:  $-\Delta E(L) = dE_{stat}/dx * L + B(L)$ 

With: B(L) UV safe (as anticipated) and  $\rightarrow$  cst when L  $\rightarrow \infty$ .

For small L, the hard scale  $\ll 1/L \gg$  would lead to  $k_{typ}$  in B(L) above  $k_{cut} \Rightarrow$  Condition on L: must be typically larger then  $1/m_D$ .

Behaviour at small L has been nevertheless studied, using *sum rules*; interesting cancelations were discovered.

$$-\Delta E(L) = \frac{C_R \alpha_s m_D^2 k_{cut}^3}{108 \, \pi v^2} L^4$$

#### **Retardation effect: Results**





Retardation effect: Results (II)

 $-\Delta E_{asymp}(L,E,\ldots) = dE_{stat}/dx * (L-delay(E,T))$ 



Delay roughly  $\alpha$  1/T, but not of the order of rD !!!

#### Retardation effect: Results (III)

#### Might have some phenomenological implications :

Jet absorption and corona effect at RHIC. Extracting collision

geometry from experimental data

V.S. Pantuev

University at Stony Brook, Stony Brook, NY 11794-3800

Abstract

We propose a simple model based on Monte Carlo simulation of nucleus-nucleus collisions using a Glauber approach to explain experimental data on the angular dependence of the nuclear modification factor  $R_{AA}$  at high transverse momentum in the reaction plane. The model has one free parameter  $L\simeq 2$  fm to describe the the thickness of the corona area and was ajusted to fit the experimental data on AuAu collisions at centrality 50-60%. The model nicely describes the  $R_{AA}$ dependence for all centrality classes. We extract the second Fourier component amplitude,  $v_2$ , for high pt particle azimuthal distribution and found  $v_2$  should be at the level of 11-12% purely from the geometry of the collision with particle absorption in the core. We give a prediction for  $R_{AA}$  in Cu+Cu collisions at 200 GeV. Our physical interpretation of the parameter L is that it's actually the formation time  $T = L/c \simeq 2$  fm/c.

# Retardation effect for heavy parton collisional energy loss in QGP.

- Motivation
- Collisional energy loss in stationnary regime
- Retardation effect; main results
- Radiation
- Conclusion & Perspectives

#### Retardation effect... and other related mechanisms.



 $\rightarrow$  finite negative constant when L  $\rightarrow \infty$  (dipole separation easier in QGP than in vacuum)

### Retardation effect... and other related mechanisms.

- If one just considers the force acting on the heavy parton: irrelevant question (It takes some time to reach its fully value, that's all).
- Being less inclusive, one can identify another interesting mechanism...

# Retardation effect... and radiation.



 $\delta(\omega - \omega_s(k))$ : • Clear signature of some radiation (cf. identification of Cherenkov radiation in stationnary Collisional E loss)

• Does not scale like  $L \Rightarrow$  Not Cherenkov (although emitted by the time dependent medium polarization), but 'initial' Brehmstrallung .

•  $\Delta E$  incorporates the difference of energies radiated in the medium (neglecting radiative rescattering) and in the vacuum.

#### In-vacuum radiation



Radiative contribution W(L) to the energy loss :

$$\frac{dW(L)}{dk\,d\cos\theta}\Big|_{vac} = \frac{C_R\alpha_s}{\pi}\sin^2\theta\,\frac{\sin^2((k-kv\cos\theta)\,L/(2v))}{(\cos\theta-1/v)^2} \quad \xrightarrow{}_{L\to\infty}\frac{C_R\alpha_s}{2\pi}\frac{v^2\sin^2\theta}{(1-v\cos\theta)^2}$$

<u>N.B.</u>: For v=1, this is just the Z.O.L. result of GLV for x<<1

"Radiates like crazy", but what should matter is the difference with the "In-medium" radiation.

### In-medium radiation



Radiation of collective modes, described at the level of the HTL ressumation

Not considered before, to my knowledge

$$\frac{dW(L)}{dk\,d\cos\theta} = \frac{C_R\alpha_s}{\pi} \left\{ z_L(k) \frac{k^2}{\omega_L^2(k)} \cos^2\theta \frac{\sin^2((\omega_L(k) - kv\cos\theta)L/(2v))}{(\cos\theta - \omega_L(k)/(kv))^2} + z_T(k)\sin^2\theta \frac{\sin^2((\omega_T(k) - kv\cos\theta)L/(2v))}{(\cos\theta - \omega_T(k)/(kv))^2} \right\}$$
$$\xrightarrow{L\to\infty} \frac{C_R\alpha_s}{2\pi} \left\{ z_L(k) \frac{k^2}{\omega_L^2(k)} \frac{\cos^2\theta}{(\cos\theta - \omega_L(k)/(kv))^2} + z_T(k) \frac{\sin^2\theta}{(\cos\theta - \omega_T(k)/(kv))^2} \right\}$$

Long: suppressed at large k

# Vacuum vs Infinite medium







• In all cases, the  $\theta$ -integrated Inmedium radiation is weaker than in the vacuum (finite mass, residues < 1)

• Interplay of trans. and long. radiation for  $\omega$  of the order of mD

# Infinite medium vs Finite (L=5fm) medium







- Depletion at small angle
- <u>Gluon formed</u>:

 $\sin^2((\omega_L(k) - kv\cos\theta)L/(2v))$  averages to  $\frac{1}{2}$ 

Provides a criteria for formation time.

• Possible consequences on the understanding of far away hadrons.

# Conclusions & Perspectives.

- 1. Extansion of the formalism of Thoma and Guylassy in the case of partons produced inside the medium.
- 2. Collisional energy loss suppressed by large factor. Retardation time of the order of several fm/c.
- 3. In-vacuum gluon radiation is supressed by the medium. Radiation of collective mode is treated using the correct dispersion relation.
- 4. Crucial implications on the phenomenology of jet quenching.
- 5. Consequences on the radiative energy loss induced by rescatterings ?



the splitting function of some in-medium evolution equation ?