Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS

T. Falter, W. Cassing, K. Gallmeister, U. Mosel

Contents: Motivation
- Model
- Results
- Summary \& Outlook

Motivation

- elementary eN reaction
estimation of
formation time via hadronic radius
$\left(r_{h}=0.5-0.8 \mathrm{fm}\right)$

$$
\tau_{f} \geq \frac{r_{h}}{c}
$$

reaction products hadronize long before they reach the detector

- eA reactions at HERMES
- interactions with (cold) nuclear medium during t_{f}

space-time picture of hadronization \&

 prehadronic interactions- lessons for more complex heavy-ion collisions
- jet supression at RHIC
- partonic energy loss in QGP
- (pre-)hadronic FSI
\longrightarrow talk by K. Gallmeister

Model

- $\gamma A, e A$ reaction splitted into 2 parts :

- $\gamma^{*} N \rightarrow X$ using PYTHIA \& FRITIOF
- additional consideration of
- binding energies
- Fermi motion
- Pauli blocking
- coherence length effects
- propagation of final state X within BUU transport model
- consideration of
- elastic and inelastic scattering (coupled channels)
- hadronic structure of the photon \& event classes

- direct photon interactions:

DIS

QCD Compton

photon-gluon fusion

- resolved photon interactions:

- hadronic structure of the photon

E shadowing of the vector meson component

- coherence length: distance that γ^{*} travels as a vector meson fluctuation

$$
\begin{aligned}
l_{V} & =\left|k_{V}-k_{\gamma}\right|^{-1} \\
& \approx \frac{2 \nu}{Q^{2}+m_{V}^{2}}
\end{aligned}
$$

- coherence length > mean free path inside nucleus

E density of nucleons participating in the production process reduced

- influences reactions triggered by the vector meson component (e.g. $\gamma^{*} N \rightarrow \rho^{0} N$)

- hard interactions (e.g. direct $\gamma^{*} N$ reaction)
- excitation of hadronic strings
- fragmentation according to the Lund model

(ud) ${ }_{0} \mathrm{~d}_{2} \quad \overline{\mathrm{~d}}_{2} \mathrm{~d}_{1} \quad \overline{\mathrm{~d}}_{1} \mathrm{u}_{0}$

(ud) $)_{0} \mathrm{~d}_{2} \overline{\mathrm{~d}}_{2} \mathrm{u}_{0}$

(ud) ${ }_{0} \mathrm{U}_{0}$

p
(ud) ${ }_{0} \mathrm{U}_{0}$

- general approach in transport model
- string fragments very fast into

color-neutral prehadrons $t_{p}=0$

E prehadrons need formation time $t_{f}=\gamma_{h} \tau_{f}$ to build up hadronic wave function

E prehadronic cross section σ^{*}

$$
\begin{aligned}
\sigma_{\mathrm{b}}^{*} & =\frac{\# q_{\mathrm{orig}}}{3} \sigma_{\mathrm{b}} \\
\sigma_{\mathrm{m}}^{*} & =\frac{\# q_{\mathrm{orig}}}{2} \sigma_{\mathrm{m}}
\end{aligned}
$$ determined by constituent quark model

E effective cross section of nucleon debris

comparison with
gluon bremsstrahlung model
C. Ciofi degli Atti and B. Z. Kopeliovich,

Eur. Phys. J. A 17, 133 (2003).

E starting time of (pre-)hadronic FSI

- Comparison with Lund estimate
A. Bialas and M.Gyulassy, NPB 291 (1987) 793

- DIS of complex nuclei

- "leading" prehadrons
(= target-, beam remnants) can undergo FSI directly after $\gamma^{*} N$ interaction

- hadrons that solely contain quarks from string fragmentation start to interact after τ_{f}
- production of new particles
- redistribution of energy

- BUU transport model

- for each particle species $i(i=N, R, Y, \pi, \rho, \mathrm{~K}, \ldots)$
exists a Boltzmann-Uehling-Uhlenbeck equation:

$$
\left(\frac{\partial}{\partial t}+\left(\nabla_{\vec{p}} H\right) \nabla_{\vec{r}}-\left(\nabla_{\vec{r}} H\right) \nabla_{\vec{p}}\right) f_{i}(\vec{r}, \vec{p}, t)=I_{\mathrm{COII}}\left[f_{1}, \ldots, f_{i}, \ldots, f_{M}\right]
$$

f_{i} : phase space density
H : Hamilton function

$$
H=\sqrt{\left(\mu+U_{s}\right)^{2}+\vec{p}^{2}}
$$

mean field for baryons
collision integral accounts for changes in f_{i} due to 2 particle collisions:
creation, annihilation, elastic scattering
(Pauli blocking for fermions)

- set of BUU equations coupled via $I_{\text {coll }}$ and mean field

Results

- HERMES:

- look for CT in incoherent ρ^{0} electroproduction off ${ }^{14} \mathrm{~N}$

$$
\nu \approx 10-20 \mathrm{GeV}, \quad Q^{2} \approx 0.5-5 \mathrm{GeV}^{2}
$$

- diffractive V production: $\gamma^{*} N \rightarrow \rho^{0} N$
- size of initially produced $q \bar{q}$ pair is expected to decrease with increasing Q^{2}
- early stage of evolution: small $q \bar{q}$ pair interacts mainly via its color dipole moment:
$\sigma_{\mathrm{q} \overline{\mathrm{q}}} \sim$ diameter 2
- large energies:
$-q \bar{q}$ frozen in small sized configuration while passing nucleus
effects nuclear transparency ratio:

$$
T_{A}=\frac{\sigma_{\gamma^{*} A \rightarrow \rho^{0} A^{*}}}{A \sigma_{\gamma^{*} p \rightarrow \rho^{0} p}}
$$

- Comparison with Hydrogen data

- experimental t-cut: $|t|>0.09 \mathrm{GeV}^{2}$
to get rid of coherent ρ^{0} production: $\gamma^{*} A \rightarrow \rho^{0} A$
- BUU \& Glauber theory agree with experiment

no CT in both calculations only coherence length effects

- hadron attenuation in DIS off nuclei

- multiplicity ratio:

$$
R_{M}^{h}\left(z_{h}, p_{T}, \nu\right)=\frac{\left(\frac{N_{h}\left(z_{h}, p_{T}, \nu\right)}{N_{e}(\nu)}\right)_{A}}{\left(\frac{N_{h}\left(z_{h}, p_{T}, \nu\right)}{N_{e}(\nu)}\right)_{D}} \quad z_{h}=\frac{E_{h}}{\nu}
$$

- Experiments:

E EMC: $\quad 100-200 \mathrm{GeV} \mu$-beam on ${ }^{64} \mathrm{Cu}$

- HERMES: $\quad 27.6 \mathrm{GeV}$ e+-beam on ${ }^{14} \mathrm{~N},{ }^{20} \mathrm{Ne},{ }^{84} \mathrm{Kr}$

E Jefferson Lab: 5.4 GeV e-beam on ${ }^{12} \mathrm{C},{ }^{56} \mathrm{Fe},{ }^{208} \mathrm{~Pb}$

- attenuation due to
- partonic energy loss
(X.N. Wang et al., F. Arleo)
- (pre)hadronic absorption
(A. Accardi et al.) + rescaling of fragmentation function
(B. Kopeliovich et al., T. Falter et al.)

- DIS off proton

- HERMES $v=2.5-24 \mathrm{GeV}, \quad \mathrm{Q}^{2}>1 \mathrm{GeV}^{2}, \quad \mathrm{~W}>2 \mathrm{GeV}$
- red curves: calculation w/o cuts on hadron kinematics and assuming 4π-detector

E charged hadron production in DIS off ${ }^{84} \mathrm{Kr}$ at HERMES

- including all experimental cuts
- accounting for angular acceptance of HERMES detector
- average kinematic variables from simulation:

E multiplicity ratio of charged hadrons

- w/o prehadronic FSI

prehadronic interactions needed

- charged hadrons
- with prehadronic interactions

$\tau_{f}>0.5 \mathrm{fm} / \mathrm{c}$ compatible with pA data at AGS energies
- influence of detector geometry $\left(\tau_{f}=0.5 \mathrm{fm} / \mathrm{c}\right)$

- needs to be accounted for at $z_{h}<0.4$
- important for integrated spectra

E p_{T}-spectrum of charged hadrons $\left(\tau_{\mathrm{f}}=0.5 \mathrm{fm} / \mathrm{c}\right)$

strong increase
at high $p_{T}>1 \mathrm{GeV}$
Cronin effect?
from calculations: $\left\langle k_{T}\right\rangle_{A}=\left\langle k_{T}\right\rangle_{N}$, i.e. not Cronin!

E attenuation of identified hadrons ($\tau_{\mathrm{f}}=0.5 \mathrm{fm} / \mathrm{c}$)

1. double-hadron attenuation $\left(\tau_{\mathrm{f}}=0.5 \mathrm{fm} / \mathrm{c}\right)$

- leading hadron
$z_{1}>0.5$
- subleading hadron
$\mathrm{Z}_{2}<\mathrm{Z}_{1}$

$$
R_{2}\left(z_{2}\right)=\frac{\left(\frac{N_{2}\left(z_{2}\right)}{N_{1}}\right)_{A}}{\left(\frac{N_{2}\left(z_{2}\right)}{N_{1}}\right)_{D}}
$$

- HERMES @ $12 \mathrm{GeV}\left(\tau_{\mathrm{f}}=0.5 \mathrm{fm} / \mathrm{c}\right)$
- model also works at lower energies

- Jefferson Lab ($\tau_{\mathrm{f}}=0.5 \mathrm{fm} / \mathrm{c}$)

- CLAS detector

larger geometrical acceptance

- detects more secondary particles from FSI

- CEBAF

lower energy

- strong effect of Fermi-motion

Summary \& Outlook

- model for γ and e induced reactions at GeV energies
- combines:
- qm coherence in entrance channel
- sophisticated event generation
- coupled channel transport description of FSI
- can decribe
- coherence length effects in exclusive ρ^{0} production
at HERMES
- most features observed in hadron attenuation
- works also for:
- γ and e reactions in resonance region
- $\pi A, p A$ and $A A$ reactions
same parameter set
talk by K. Gallmeister
r future plans:
- consistent event generation AND space-time picture by PYTHIA
- analysis of future JLab experiments, ultra-peripheral HIC

