Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS

T. Falter, W. Cassing, K. Gallmeister, U. Mosel

Institut für Theoretische Physik UNIVERSITÄT GIESSEN

Motivation

elementary eN reaction

eA reactions at HERMES

interactions with (cold) nuclear medium during t_f

space-time picture of hadronization & prehadronic interactions

jet supression at RHIC

partonic energy loss in QGP

(pre-)hadronic FSI

Model

e

e'

• γA , eA reaction splitted into 2 parts :

- $\gamma^* N \rightarrow X$ using PYTHIA & FRITIOF
 - additional consideration of
 - binding energies
 - Fermi motion
 - Pauli blocking
 - coherence length effects

- propagation of final state X within
 - **BUU transport model**
 - consideration of
 - elastic and inelastic scattering (coupled channels)

hadronic structure of the photon & event classes

- direct photon interactions:

DIS

QCD Compton

photon-gluon fusion

– resolved photon interactions:

diffractive VMD

VMD

GVMD

hadronic structure of the photon

shadowing of the vector meson component

– coherence length:	$l_V = k_V - k_\gamma ^{-1}$
distance that γ^* travels as	$\approx 2\nu$
a vector meson fluctuation	$\sim Q^2 + m_V^2$

- coherence length > mean free path inside nucleus
 - density of nucleons participating in the production process reduced
 - influences reactions triggered by the vector meson component (e.g. $\gamma^*N \rightarrow \rho^0 N$)

hard interactions (e.g. direct γ^*N reaction)

excitation of hadronic strings

general approach in transport model

- string fragments very fast into color-neutral prehadrons t_p = 0
- prehadrons need formation time $t_f = \gamma_h \tau_f$ to build up hadronic wave function
- prehadronic cross section or* determined by constituent quark model

$$\sigma_{\rm b}^* = \frac{\#q_{\rm orig}}{3}\sigma_{\rm b}$$
$$\sigma_{\rm m}^* = \frac{\#q_{\rm orig}}{2}\sigma_{\rm m}$$

effective cross section of nucleon debris

comparison with gluon bremsstrahlung model

C. Ciofi degli Atti and B. Z. Kopeliovich, Eur. Phys. J. A **17**, 133 (2003).

starting time of (pre-)hadronic FSI

Comparison with Lund estimate

A. Bialas and M.Gyulassy, NPB 291 (1987) 793

hadrons that solely contain quarks
 from string fragmentation start to interact after τ_f

production of new particlesredistribution of energy

BUU transport model

- for each particle species i ($i = N, R, Y, \pi, \rho, K, ...$) exists a Boltzmann-Uehling-Uhlenbeck equation:

$$\left(\frac{\partial}{\partial t} + (\nabla_{\vec{p}}H)\nabla_{\vec{r}} - (\nabla_{\vec{r}}H)\nabla_{\vec{p}}\right)f_i(\vec{r},\vec{p},t) = I_{\text{coll}}\left[f_1,\ldots,f_i,\ldots,f_M\right]$$

- f_i : phase space density
- H: Hamilton function

$$H = \sqrt{(\mu + U_s)^2 + \vec{p}^2}$$

t
mean field for baryons

collision integral accounts for changes in f_i due to 2 particle collisions: creation, annihilation, elastic scattering (Pauli blocking for fermions)

set of BUU equations coupled via I_{coll} and mean field

products of $\gamma^* A$ reaction need not be created in primary $\gamma^* N$ reaction

Results

HERMES:

– look for CT in incoherent ρ^0 electroproduction off ¹⁴N

$$u \approx 10 - 20 \,\mathrm{GeV}, \quad Q^2 \approx 0.5 - 5 \,\mathrm{GeV}^2$$

- diffractive V production: $\gamma^* N \rightarrow \rho^0 N$
 - size of initially produced qq pair is expected to decrease with increasing Q²
 - early stage of evolution: small qq pair interacts mainly via its color dipole moment: $\sigma_{q\bar{q}} \sim diameter^2$

Iarge energies:

- qq frozen in small sized configuration while passing nucleus

effects nuclear transparency ratio:

 $T_A = \frac{\sigma_{\gamma^* A \to \rho^0 A^*}}{A \sigma_{\gamma^* n \to \rho^0 n}}$

Comparison with Hydrogen data

- experimental *t*-cut: $|t| > 0.09 \text{ GeV}^2$

• to get rid of coherent ρ^0 production: $\gamma^* A \rightarrow \rho^0 A$

BUU & Glauber theory agree with experiment

hadron attenuation in DIS off nuclei

- multiplicity ratio:

$$R_M^h(z_h, p_T, \nu) = \frac{\left(\frac{N_h(z_h, p_T, \nu)}{N_e(\nu)}\right)_A}{\left(\frac{N_h(z_h, p_T, \nu)}{N_e(\nu)}\right)_D} \qquad z_h = \frac{E_h}{\nu}$$

- Experiments:
 - EMC: 100-200 GeV μ-beam on ⁶⁴Cu
 - HERMES: 27.6 GeV e⁺-beam on ¹⁴N, ²⁰Ne, ⁸⁴Kr
 - Jefferson Lab: 5.4 GeV e⁻-beam on ¹²C, ⁵⁶Fe, ²⁰⁸Pb

attenuation due to

- partonic energy loss
 - (X.N. Wang et al., F. Arleo)
- (pre)hadronic absorption
 - (A. Accardi et al.) + rescaling of fragmentation function
 - (B. Kopeliovich et al., T. Falter et al.)

DIS off proton

- HERMES v = 2.5 - 24 GeV, $Q^2 > 1 \text{ GeV}^2$, W > 2 GeV

- red curves: calculation w/o cuts on hadron kinematics

and assuming 4π -detector

 Z_{h}

charged hadron production in DIS off ⁸⁴Kr at HERMES

- including all experimental cuts
- accounting for angular acceptance of HERMES detector

average kinematic variables from simulation:

- multiplicity ratio of charged hadrons
 - w/o prehadronic FSI

prehadronic interactions needed

charged hadrons

with prehadronic interactions

 $\tau_f > 0.5$ fm/c compatible with *pA* data at AGS energies

influence of detector geometry ($\tau_f = 0.5 \text{ fm/c}$)

- needs to be accounted for at $z_h < 0.4$
- important for integrated spectra

p_T-spectrum of charged hadrons ($\tau_f = 0.5$ fm/c)

from calculations: $\langle k_T \rangle_A = \langle k_T \rangle_N$, i.e. not Cronin!

attenuation of identified hadrons ($\tau_f = 0.5 \text{ fm/c}$)

- double-hadron attenuation ($\tau_f = 0.5 \text{ fm/c}$)
 - leading hadron $z_1 > 0.5$
 - subleading hadron
 z₂ < z₁

 $R_{2}(z_{2}) = \frac{\left(\frac{N_{2}(z_{2})}{N_{1}}\right)_{A}}{\left(\frac{N_{2}(z_{2})}{N_{1}}\right)_{D}}$

HERMES @ 12 GeV (τ_f = 0.5 fm/c)

model also works at lower energies

• Jefferson Lab ($\tau_f = 0.5 \text{ fm/c}$)

CLAS detector

larger geometrical acceptance

 detects more secondary particles from FSI

– CEBAF

lower energy

strong effect of Fermi-motion

Summary & Outlook

model for γ and e induced reactions at GeV energies

- combines:
 - qm coherence in entrance channel
 - sophisticated event generation
 - coupled channel transport description of FSI
- can decribe
 - **coherence length effects in exclusive** ρ^0 production
 - most features observed in hadron attenuation

works also for:

- γ and e reactions in resonance region
- **A**, pA and AA reactions

same parameter set

at HERMES

energies

talk by K. Gallmeister

future plans:

- consistent event generation AND space-time picture by PYTHIA ¥
- analysis of future JLab experiments, ultra-peripheral HIC