Quark Propagation and Fundamental Processes in QCD

- Hadronization
- Quark-gluon dynamics
- Connections to HERMES, LHC/RHIC, and Fermilab
- JLab experiments present and future

Will Brooks, September 2005, ECT*

Quark Propagation and Fundamental Processes in QCD

Hadronization

- The transformation of energetic quark in color field into hadron(s)
- Time dependence of restoration of hadron's local color field

Quark-gluon dynamics

- Partonic energy loss via gluon emission
- Quark-gluon correlations

Fascination with Hadronization

 Hadronization is at the heart of the most fascinating feature of QCD: confinement

Fascination with Hadronization

venergy transferred by the electron (initial energy of struck quark) Q^2 four-momentum transferred by the electron (initial size of struck quark) z_h = E_{hadron}/v , fraction of struck quark energy carried by hadron; $0 < z_h < 1$ p_T quark/hadron momentum transverse to virtual photon direction; resultsfrom initial quark transverse momentum, multiple scattering in-medium,intrinsic gluon emission, other hadronization-dynamics

Target Frame DIS Kinematics

FIG. 1. DIS in the infinite-momentum frame.

See *"Space-time structure of deepinelastic lepton-hadron scattering*," Del Duca, Brodsky, Hoyer PRD 46 (1992) p. 931

FIG. 2. Time-ordered contributions to DIS in the target rest frame.

Nuclear Deep Inelastic Scattering

- We can learn about hadronization distance scales and reaction mechanisms from nuclear DIS
- Nucleus acts as a spatial filter for outgoing hadronization products

Initial focus on properties of leading hadron; correlations with subleading and soft protons is also interesting

$$R_{M}^{h}(z, v) = \frac{\left\{\frac{N_{h}(z, v)}{N_{e}^{DIS}(v)}\right\}_{A}}{\left[N_{h}(z, v)\right]}$$

$$Hadronic multiplicity ratio$$

$$R_{M}^{h}(z, v, p_{T}^{2}, Q^{2}, \phi) = \frac{\left\{\frac{N_{h}^{DIS}(z, v, p_{T}^{2}, Q^{2}, \phi)}{N_{e}^{DIS}(v, Q^{2})}\right\}_{A}}{\left\{\frac{N_{h}^{DIS}(z, v, p_{T}^{2}, Q^{2}, \phi)}{N_{e}^{DIS}(v, Q^{2})}\right\}_{D}}$$

$$R_{M}^{h}(z, v, p_{T}^{2}, Q^{2}, \phi) = \frac{\left\{\frac{N_{h}^{DIS}(z, v, p_{T}^{2}, Q^{2}, \phi)}{N_{e}^{DIS}(v, Q^{2})}\right\}_{D}}{\left\{\frac{N_{h}^{DIS}(z, v, p_{T}^{2}, Q^{2}, \phi)}{N_{e}^{DIS}(v, Q^{2})}\right\}_{D}}$$

Quark-Gluon Dynamics

- Struck quark emits gluons in vacuum because of confinement
- In nuclear medium, multiple scattering will stimulate *additional* gluon radiation; may vary as L² (!) – QCD LPM effect
- Gluon radiation creates dE/dx that can be connected to transverse momentum broadening (an experimental observable):

$$dE/dx \approx \frac{\alpha_s}{\pi} N_c \langle p_T^2 \rangle_L$$

- Indications from models and data suggest dE/dx may be of measurable size, ~ 1 GeV/fm
- There is an associated quark-gluon correlation function (Guo and Qiu, PRD61, 096003, 2000)
- Energy loss is proportional to the *gluon density* of the medium

Jefferson Lab Experiments: Next 7 Years

E02-104 (Brooks, CLAS EG2) in Hall B

- Took part of data in January-February 2004
- Hadronization, transverse momentum broadening surveyed over a wide kinematic range
- E04-002 (Chen, Norum, Wang) in Hall A
 - Hadronization in narrow kinematic bins with good particle ID for charged K and π
 - Waiting to get on the schedule
- Interest in Hall C (Ent, Gaskell, Keppel, Kinney)
 - Transverse momentum broadening in narrow kinematic bins with good particle ID for charged K and π
 - Proposal under discussion

Sample of Anticipated 6 GeV Data

CEBAF at Jefferson Lab

A high intensity, continuous electron beam recirculating accelerator

20 cryomodules

- Innovations
 - Superconducting RF technology
 - Multi-pass beam recirculation
- Cavities:
 - 338 5-cell cavities at 2.2 K
 - 1497 MHz, ≤12 MV/m
 - $Q_0 > 5 \times 10^9$

CLAS – the CEBAF Large Acceptance Spectrometer

Charged particle angles 8° - 144°
Neutral particle angles 8° - 70°
Momentum resolution ~0.5% (charged)
Angular resolution ~0.5 mr (charged)
Identification of p, π⁺/π⁻, K⁺/K⁻, e⁻/e⁺

р

π

e

CLAS EG2 Physics Focus

Search for Color Transparency Measure rho absorption vs. Q² at fixed coherence length Compare absorption in deuterium, carbon, aluminum, and iron

E02-110

Quark Propagation through Nuclei Measure attenuation and transverse momentum broadening of hadrons (π , K) in DIS kinematics

Compare absorption in deuterium, carbon, iron, tin, and lead

E02-104

CLAS EG2 Targets

- *Two* targets in the beam simultaneously
- 2 cm LD2, upstream
- Solid target downstream
- Six solid targets:
 - -Carbon

-Aluminum (2 thicknesses)

CLAS EG2 Running Conditions

- Beam energies: 4 GeV (7 day) and 5 GeV (50 days)
- Luminosity: 1.9-2.0 E34 (D+Fe), 1.3 E34 (D+Pb)
- Data taking:
 - DC occupancy < 3%,
 - deadtime 7% (D+Pb) and 14% (D+Fe)
- Number of triggers:
 - 0.6 billion (D+Fe, 4 GeV)
 - 2 billion (D+Fe, 5 GeV)
 - 1.5 billion (D+Pb, 5 GeV)
 - Anticipate ~1 billion (D+C, 5 GeV)
- Primary challenges:
 - Beam current stability
 - Beam profile
 - DAQ stability (December 2003 January 2004)
 - DC gas (summer 2003) and temperature (December 2003)

CLAS Kinematic Coverage and Particle Identification at 6 GeV

CLAS EG2 Online Physics Results

Examples of studies that can be performed with CLAS high-luminosity data

- Multi-dimensional analysis dependence on A, z, v, p_T^2 , Q^2 , ϕ of
 - Hadronic multiplicity ratio
 - p_T^2 broadening
- Correlations
 - Between leading and next-to-leading hadron
 - Between leading hadron and soft transverse protons
- Others?
 - Hoping for more ideas from this workshop!

Preliminary Results from EG2

- Based on 5% of data with preliminary calibrations
- Disclaimers and caveats:
 - No acceptance correction (small, two targets in the beam)
 - Not final calibrations (should be nearly irrelevant, bins are huge)
 - No fiducial cuts (probably ok, two targets in beam)
 - No radiative correction (effect primarily cancels in ratios)
 - No correction for rho contribution of pi+ (need full statistics to correct for this)***
 - Few-percent kaon contamination in region 2-2.7 GeV
 - No isospin correction for heavy targets(~5%?)
 - No x_F cuts
- These disclaimers apply to all CLAS data in this talk!

Preliminary results: hadronic multiplicity ratio for leading π^+

$$R_{M}^{h}(z, \mathbf{v}) = \frac{\left\{\frac{N_{h}(z, \mathbf{v})}{N_{e}^{DIS}(\mathbf{v})}\right\}_{A}}{\left\{\frac{N_{h}(z, \mathbf{v})}{N_{e}^{DIS}(\mathbf{v})}\right\}_{D}}$$

Interpretation of Hadronic Multiplicity Ratio

(concrete example in hadronization picture)

No strong Q² dependence seen

Multiplicity ratio of different Q² strips for pion+ with energy smaller 2 GeV:

Preliminary results: p_T^2 broadening for leading π^+

1 < Q2 < 2; 2 < nu < 3; 0.5 < Z < 0.6

CLAS EG2 Preliminary 5% of data

1 < Q2 < 2; 2 < nu < 3; 0.6 < Z < 0.7

CLAS EG2 Preliminary 5% of data

1 < Q2 < 2; 3 < nu < 4; 0.5 < Z < 0.6

CLAS EG2 Preliminary 5% of data

1 < Q2 < 2; 3 < nu < 4; 0.6 < Z < 0.7

CLAS EG2 Preliminary 5% of data

2 < Q2 < 3; 3 < nu < 4; 0.6 < Z < 0.7

CLAS EG2 Preliminary 5% of data

2 < Q2 < 3; 3 < nu < 4; 0.5 < Z < 0.6

CLAS EG2 Preliminary 5% of data

1 < Q2 < 2; 4 < nu < 5; 0.5 < Z < 0.6

CLAS EG2 Preliminary 5% of data

 p_T^2 broadening vs. v for 1<Q²<2 GeV² and 0.5<z<0.6, A^{1/3}=6

Correlations: protons accompanying leading π^+

- For DIS events with a leading π⁺ and at least one proton detected, calculate the average number of protons vs. z and p_T
- Results shown for Pb and deuterium
- Low energy, large angle protons also studied, show much smaller effect

'Cronin effect'

Capabilities after the 12 GeV upgrade

Comparison to HERMES Data

- □ Mostly 27 GeV positron beam, some 12 GeV beam
- Targets include D, He, N, Kr, Xe
- **Excellent PID** (RICH) except for early nitrogen targets
 - → identify $\pi^{+/-/0}$, K^{+/-}, proton and antiproton
- Pioneering measurements of high quality
 - Some limitations: luminosity, gas targets \rightarrow typically 1-D binning, lower Q², A<140

With JLab at 12 GeV (~2013-2015), will have:

nearly three orders of magnitude more luminosity:

- \rightarrow do multi-dimensional binning
- \rightarrow reach high Q^2
- \rightarrow study multi-particle correlations capability of solid targets:

 \rightarrow study largest nuclei

Examples of Experimental Data and Theoretical Predictions

ata GeV Anticipated

Bins in yellow are accessible at 6 GeV

hadron	c au	mass	flavor	detection	production rate
		(GeV)	content	$\operatorname{channel}$	per 1k DIS events
π^0	$25 \mathrm{nm}$	0.13	$uar{u}dar{d}$	$\gamma\gamma$	1100
π^+	7.8 m	0.14	$uar{d}$	direct	1000
π^{-}	7.8 m	0.14	$dar{u}$	direct	1000
η	0.17 nm	0.55	$uar{u}dar{d}sar{s}$	$\gamma\gamma$	120
ω	23 fm	0.78	$uar{u}dar{d}sar{s}$	$\pi^+\pi^-\pi^0$	170
η'	0.98 pm	0.96	$uar{u}dar{d}sar{s}$	$\pi^+\pi^-\eta$	27
ϕ	44 fm	1.0	$uar{u}dar{d}sar{s}$	K^+K^-	0.8
K^+	3.7 m	0.49	$u\bar{s}$	direct	75
K^-	3.7 m	0.49	$\bar{u}s$	direct	25
K^0	$27 \mathrm{~mm}$	0.50	$d\bar{s}$	$\pi^+\pi^-$	42
p	stable	0.94	ud	direct	1100
\bar{p}	stable	0.94	$\bar{u}ar{d}$	direct	3
Λ	$79 \mathrm{mm}$	1.1	uds	$p\pi^-$	72
$\Lambda(1520)$	13 fm	1.5	uds	$p\pi^-$	-
Σ^+	24 mm	1.2	us	$p\pi^0$	6
Σ^0	22 pm	1.2	uds	$\Lambda\gamma$	11
Ξ^0	87 mm	1.3	us	$\Lambda \pi^0$	0.6
[]	49 mm	1.3	ds	$\Lambda\pi^-$	0.9

Conclusions

- The birth of a new class of experiments
- Exciting opportunity to gain new insight into two fundamental QCD processes – hadronization and gluon bremsstrahlung
- The Next Seven Years new data from all three halls at Jefferson Lab will break new ground
- 12 GeV experiments will be even better

Potential issues

- Extent to which factorization applies
- Resonances in the residual system
- Distinguish target from current fragmentation?