Quenching of hadron spectra in cold and hot media

François Arleo

CERN

Trento – September 2005

Outline

- Motivations
 - Energy loss and deconfinement
- Hadron production in DIS on nuclei
 - Model for nuclear fragmentation functions
 - Results and comparison to data
- From cold to hot matter
 - Quenching of pion and photon spectra
 - RHIC energy density

Summary

[FA, EPJ C30 (2003) 213 + work in preparation]

Phase transition at high temperature from hadronic matter to quark-gluon plasma

Phase transition at high temperature from hadronic matter to quark-gluon plasma

How to achieve such conditions ?

Ultra-relativistic heavy ion collisions

François Arleo (CERN)

- SPS (CERN), since 1994
 - Pb-Pb at $\sqrt{s} \simeq 20 \text{ GeV}$
 - ▲ NA44, NA49, NA50, WA97, WA98, CERES ...
- RHIC (Brookhaven), since 2000
 - $\bullet~$ Au-Au at $\sqrt{s}\simeq 200~{\rm GeV}$
 - BRAHMS, PHENIX, PHOBOS, STAR
- LHC (CERN), starting from 2007
 - Pb-Pb at $\sqrt{s} = 5.5 \text{ TeV}$
 - ▲ ALICE, CMS

What – in that mess – could signal deconfinement?

François Arleo (CERN)

Multiple soft collisions incurred by hard partons

• Gluon radiation $dI/d\omega$ proportional to the medium density

[Baier, Dokshitzer, Mueller, Peigné, Schiff 1996, 1997]
[Gyulassy, Wang 1994; Gyulassy, Lévai, Vitev 2000]
[Zakharov 1996 1997 1998 ; Wiedemann 2000 2001]

Multiple soft collisions incurred by hard partons

- Gluon radiation $dI/d\omega$ proportional to the medium density
- Energy loss expected to be huge in quark-gluon plasma

Multiple soft collisions incurred by hard partons

- Gluon radiation $dI/d\omega$ proportional to the medium density
- Energy loss expected to be huge in quark-gluon plasma

Which signal ?

Jet quenching

A clear experimental observable

Quenching of jets in heavy ion collisions

[Bjorken 1982; Gyulassy & Wang 1992]

Multiple soft collisions incurred by hard partons

- Gluon radiation $dI/d\omega$ proportional to the medium density
- Energy loss expected to be huge in quark-gluon plasma

What happens in a cold QCD medium ?

Analysis

Aim

• To explore quark energy loss in nuclei

Analysis

Aim

• To explore quark energy loss in nuclei

How ?

- Hadron production in DIS on nuclear targets
 - Sensitive to quark energy loss
 - A lot of new data

Analysis

Aim

• To explore quark energy loss in nuclei

How ?

- Hadron production in DIS on nuclear targets
 - Sensitive to quark energy loss
 - A lot of new data

Analysis of hadron production compared to HERMES and EMC measurements

Caveat

Several nuclear effects into the game

- Energy loss
 - Parton multiple scattering
- Nuclear absorption
 - Hadron inelastic interaction
- Partial deconfinement
 - Rescaling of virtuality Q^2

•

Caveat

Several nuclear effects into the game

- Energy loss
 - Parton multiple scattering
- Nuclear absorption
 - Hadron inelastic interaction
- Partial deconfinement
 - Rescaling of virtuality Q^2

Let's focus here only on energy loss (for the time being)

LO hadron production in DIS on nuclei

$$\frac{1}{N_A^e} \frac{dN_A^h(\nu, z)}{d\nu \, dz} \simeq \int dx \sum_{q, \bar{q}} e_q^2 x f_q^{N/A}(x, Q^2) D_q^h(z, Q^2, A)$$

$$/ \int dx \sum_{q, \bar{q}} e_q^2 x f_q^{N/A}(x, Q^2)$$

•
$$f_q^{N/A}(x,Q^2)$$
 : MRST 2001 LO
• $D_q^h(z,Q^2,A)$: Kretzer 2000 LO

LO hadron production in DIS on nuclei

$$\frac{1}{N_A^e} \frac{dN_A^h(\nu, z)}{d\nu \, dz} \simeq D_u^h(z, Q^2, A) \qquad (x \simeq 0.1)$$

6

LO hadron production in DIS on nuclei

$$\frac{1}{N_A^e} \frac{dN_A^h(\nu, z)}{d\nu \, dz} \simeq D_u^h(z, Q^2, A) \qquad (x \simeq 0.1)$$

Nuclear production ratio

$$R_{A}^{h}(z,\nu) = \frac{1}{N_{A}^{e}} \frac{dN_{A}^{h}(\nu,z)}{d\nu \, dz} / \frac{1}{N_{D}^{e}} \frac{dN_{D}^{h}(\nu,z)}{d\nu \, dz}$$

LO hadron production in DIS on nuclei

$$\frac{1}{N_A^e} \frac{dN_A^h(\nu, z)}{d\nu \, dz} \simeq D_u^h(z, Q^2, A) \qquad (x \simeq 0.1)$$

Nuclear production ratio

$$R^h_A(z,\nu) \simeq D^h_u(z,Q^2,A) / D^h_u(z,Q^2,D)$$

LO hadron production in DIS on nuclei

$$\frac{1}{N_A^e} \frac{dN_A^h(\nu, z)}{d\nu \, dz} \simeq D_u^h(z, Q^2, A) \qquad (x \simeq 0.1)$$

Nuclear production ratio

$$R^h_A(z,\nu) \simeq D^h_u(z,Q^2,A) / D^h_u(z,Q^2,D)$$

How does the nuclear medium affect fragmentation ?

Model

Multiple scatterings shift quark energy from k_{\perp} to $k_{\perp}-\epsilon$

$$\mathbf{x}_{\boldsymbol{k}_{\mathrm{T}}}^{\mathbf{k}_{\mathrm{T}}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}_{\mathrm{Q}}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}_{\mathrm{T}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}_{\mathrm{T}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}_{\mathrm{T}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}_{\mathrm{T}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}_{\mathrm{T}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}_{\mathrm{T}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}_{\mathrm{T}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}_{\mathrm{T}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}_{\mathrm{T}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}_{\mathrm{T}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}}{\boldsymbol{\ell}}} \overset{\mathbf{k}_{\mathrm{T}}-\boldsymbol{\epsilon}}{\boldsymbol{\ell}} \overset{\mathbf{k}}{\boldsymbol{\ell}} \overset{\mathbf{k}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}}{\boldsymbol{\ell}}} \overset{\mathbf{k}}{\boldsymbol{\ell}} \overset{\mathbf{k}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}}{\boldsymbol{\ell}} \overset{\mathbf{k}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}}{\boldsymbol{\ell}} \overset{\mathbf{k}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}}-\boldsymbol{\epsilon}} \overset{\mathbf{k}}-\boldsymbol{\epsilon}} \overset{$$

Model

Multiple scatterings shift quark energy from k_{\perp} to $k_{\perp}-\epsilon$

$$\mathbf{x}_{\mathbf{k}_{\mathrm{T}}}^{\mathbf{k}_{\mathrm{T}}} \stackrel{\mathbf{k}_{\mathrm{T}}-\mathbf{\epsilon}}{\mathbf{k}_{\mathrm{T}}-\mathbf{\epsilon}} = \mathbf{h}$$

Model for fragmentation functions

[Wang, Huang, Sarcevic 1996]

$$zD_{h/k}^{med}(z,\mu) = \int_0^{(1-z)E} d\epsilon \ \mathcal{P}(\epsilon,E) \ z^* D_{h/k}(z^*,\mu)$$

with $z^* = \frac{E_h}{E-\epsilon} = \frac{z}{1-\epsilon/E}$

Model

Multiple scatterings shift quark energy from k_{\perp} to $k_{\perp}-\epsilon$

$$\mathbf{x}_{\mathbf{k}_{\mathrm{T}}}^{\mathbf{k}_{\mathrm{T}}} \stackrel{\mathbf{k}_{\mathrm{T}}-\mathbf{\epsilon}}{\mathbf{k}_{\mathrm{T}}-\mathbf{\epsilon}} = \mathbf{h}$$

Model for fragmentation functions

[Wang, Huang, Sarcevic 1996]
$$zD_{h/k}^{med}(z,\mu) = \int_{0}^{(1-z)E} d\epsilon \underbrace{\mathcal{P}(\epsilon,E)}_{k} z^{*} D_{h/k}(z^{*},\mu)$$
with $z^{*} = \frac{E_{h}}{E-\epsilon} = \frac{z}{1-\epsilon/E}$

How to compute $\mathcal{P}(\epsilon, E)$?

[Baier, Dokshitzer, Mueller, Schiff 2001]

Independent gluon radiation - Poisson approximation

[Baier, Dokshitzer, Mueller, Schiff 2001]

Independent gluon radiation - Poisson approximation

• Unique ingredient: gluon spectrum $dI/d\omega$

[Baier, Dokshitzer, Mueller, Schiff 2001]

Relevant scale for the induced gluon spectrum $dI/d\omega$

$$\omega_c = \frac{1}{2} \,\hat{q} \, L^2$$

- \hat{q} : transport coefficient
 - scattering property of the medium (say its density)

• L : length of matter covered by the hard parton

Relevant scale

$$\omega_c = \frac{1}{2} \,\hat{\boldsymbol{q}} \,\boldsymbol{L}^2$$

Perturbative estimate

[Baier, Dokshitzer, Mueller, Peigné, Schiff NPB 1997]

4

•

A T

$$\hat{q}$$
 related to
 $\hat{q} = \frac{4 \pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x, Q^2)$
gluon density $\simeq 0.25 \text{ GeV/fm}^2$

Perturbative estimate

[Baier, Dokshitzer, Mueller, Peigné, Schiff NPB 1997]

0

$$\hat{q}$$
 related to
 $\hat{q} = \frac{4 \pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x, Q^2)$
gluon density $\simeq 0.25 \text{ GeV/fm}^2$

Constraints from Drell-Yan data

FA PLB 2002

Large energy loss ruled out

Perturbative estimate

Quenching of hadron spectra in cold and hot media

Perturbative estimate

[Baier, Dokshitzer, Mueller, Peigné, Schiff NPB 1997]

0

$$\hat{q}$$
 related to
 $\hat{q} = \frac{4 \pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x, Q^2)$
gluon density $\simeq 0.25 \text{ GeV/fm}^2$

Constraints from Drell-Yan data

FA PLB 2002

Large energy loss ruled out

$$\hat{q} = 0.72 \pm 0.54 \text{ GeV/fm}^2$$

François Arleo (CERN)

Length of matter

Averaging *L* from a hard sphere nucleus

$$L = \frac{3}{4}R \qquad t_f \ge 2R$$
$$L = t_f \times \left[1 - \frac{3}{8}\frac{t_f}{R} + \frac{1}{64}\left(\frac{t_f}{R}\right)^3\right]$$

6

Length of matter

Averaging *L* from a hard sphere nucleus

$$L = \frac{3}{4}R \qquad t_f \ge 2R$$

$$L = t_f \times \left[1 - \frac{3}{8}\frac{t_f}{R} + \frac{1}{64}\left(\frac{t_f}{R}\right)^3\right]$$

Take Lund model hadron formation time t_f

$$t_f = \left(\frac{\ln(1/z^2) - 1 + z^2}{1 - z^2}\right) \times \frac{z\,\nu}{\sigma}$$

σ : string tension

François Arleo (CERN)

Length of matter

Large formation time effects at large z and/or small ν

François Arleo (CERN)

Hadron attenuation $R_A^h(\nu, z)$

Taking Kretzer parameterization $z D(z,Q^2) \sim (1-z)^{\eta}$

$$R_A^h(\nu, z) \simeq \frac{D(z^*, Q^2)}{D(z, Q^2)} \simeq 1 - \frac{z}{1-z} \frac{\epsilon}{\nu} \eta^h$$
Taking Kretzer parameterization $z D(z,Q^2) \sim (1-z)^{\eta}$

$$R_A^h(\nu, z) \simeq \frac{D(z^*, Q^2)}{D(z, Q^2)} \simeq 1 - \frac{z}{1-z} \frac{\epsilon}{\nu} \eta^h$$

Main features

• Stronger attenuation at small ν

Taking Kretzer parameterization $z D(z,Q^2) \sim (1-z)^{\eta}$

$$R_A^h(\nu, z) \simeq \frac{D(z^*, Q^2)}{D(z, Q^2)} \simeq 1 - \frac{z}{1-z} \frac{\epsilon}{\nu} \eta^h$$

Main features

- Stronger attenuation at small ν
- Competing effects at large z
 - Phase space restricted $\epsilon < \nu E_h$

$$R_A^h(z) \sim \int_0^{(1-z)\nu} \mathcal{P}(\epsilon)$$

Taking Kretzer parameterization $z D(z,Q^2) \sim (1-z)^{\eta}$

$$R_A^h(\nu, z) \simeq \frac{D(z^*, Q^2)}{D(z, Q^2)} \simeq 1 - \frac{z}{1-z} \frac{\epsilon}{\nu} \eta^h$$

Main features

- Stronger attenuation at small ν
- Competing effects at large z
 - Phase space restricted $\epsilon < \nu E_h$

$$R_A^h(z) \sim \int_0^{(1-z)\nu} \mathcal{P}(\epsilon)$$

Hadronization inside the nucleus

Taking Kretzer parameterization $z D(z,Q^2) \sim (1-z)^{\eta}$

$$R_A^h(\nu, z) \simeq \frac{D(z^*, Q^2)}{D(z, Q^2)} \simeq 1 - \frac{z}{1-z} \frac{\epsilon}{\nu} \eta^h$$

Main features

- Stronger attenuation at small ν
- Competing effects at large z
- Depletion depends on FF slopes η^h

[FA EPJ C 2003]

[FA EPJ C 2003]

Pretty good agreement (except pions)

[FA EPJ C 2003]

- Pretty good agreement (except pions)
- Isospin effects
 - easier to fragment $u \to K^+$ than $u \to K^-$

[FA EPJ C 2003]

[FA EPJ C 2003]

Pretty good agreement for all hadron species

[FA EPJ C 2003]

- Pretty good agreement for all hadron species
- Important formation time effects at large z

What about possible hadron absorption in the nucleus ? Two predictions to (hopefully) clarify the picture

[FA DIS03 hep-ph/0309108]

What about possible hadron absorption in the nucleus ? Two predictions to (hopefully) clarify the picture [FA DIS03 hep-ph/0309108]

1. Energy loss saturates in large nuclei ($L \simeq t_F$)

- Xe / Kr \simeq 1

What about possible hadron absorption in the nucleus ? Two predictions to (hopefully) clarify the picture [FA DIS03 hep-ph/0309108]

1. Energy loss saturates in large nuclei ($L \simeq t_F$)

ightarrow Xe / Kr \simeq 1

2. At smaller x, u and \bar{u} sea quarks contribute equally

 $\rightarrow K^+/K^- \simeq 1$

What about possible hadron absorption in the nucleus ? Two predictions to (hopefully) clarify the picture [FA DIS03 hep-ph/0309108]

1. Energy loss saturates in large nuclei ($L \simeq t_F$)

ightarrow Xe / Kr $\simeq 1$

2. At smaller x, u and \bar{u} sea quarks contribute equally

 $\rightarrow K^+/K^- \simeq 1$

➤ Need for heavy nuclei

What about possible hadron absorption in the nucleus ? Two predictions to (hopefully) clarify the picture [FA DIS03 hep-ph/0309108]

1. Energy loss saturates in large nuclei ($L \simeq t_F$)

ightarrow Xe / Kr \simeq 1

2. At smaller x, u and \bar{u} sea quarks contribute equally

→
$$K^+/K^- \simeq 1$$

clei
ndence Talk by A. Accardi

- ➤ Need for heavy nuclei
- → Need for Q^2 dependence

From cold to hot media

(from DIS to heavy ion)

Phenomenology

Drell-Yan in h - A collisions

Nuclear matter transport coefficient

[FA PLB 2002]

- Hadrons in semi-inclusive DIS
 - Modified fragmentation functions

[FA EPJ C 2003]

- Pions and photons in heavy ion collisions
 - Dense medium properties

[FA, Aurenche, Belghobsi, Guillet JHEP 2004] [FA, in preparation]

Quenching

Quenching factor

$$\frac{R_{AA}(p_{\perp})}{dp_{\perp}^2} / \frac{N_{\text{coll}} \, d\sigma_{pp}(p_{\perp})}{dp_{\perp}^2}$$

computed assuming

- nuclear shadowing (as given by EKS) or not
- energy loss process ($20 \le \omega_c \le 25$ GeV) or not

π quenching

• Strong suppression in the π^0 channel

π quenching

- Strong suppression in the π^0 channel
 - good agreement at high p_{\perp} for $\omega_c \simeq 20 25 \text{ GeV}$

François Arleo (CERN)

Terminology

- Prompt photons
 - produced in NN collisions
- Thermal photons
 - quark-gluon plasma radiation
- Decay photons
 radiative decays

 $p_{\perp} = \mathcal{O}\left(T\right)$

$$\frac{d\sigma}{d\vec{p}_T d\eta} \simeq \sum_{i,j=q,g} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) \ F^A_{j/h_2}(x_2) \frac{d\hat{\sigma}_{ij}}{d\vec{p}_T d\eta}$$

6

 $\frac{d\sigma}{d\vec{p}_T d\eta} \simeq \sum_{i,j=q,q} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) \ F^A_{j/h_2}(x_2) \frac{d\hat{\sigma}_{ij}}{d\vec{p}_T d\eta}$

 $+\sum_{i,j,k=q,g} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) F^A_{j/h_2}(x_2) \ \frac{dz}{z^2} \ D_{\gamma/k}(z,\mu) \ \frac{d\widehat{\sigma}^k_{ij}}{d\vec{p}_- dn}$

François Arleo (CERN)

 $\frac{d\sigma}{d\vec{p}_T d\eta} \simeq \sum_{i,j=q,q} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) \ F^A_{j/h_2}(x_2) \frac{d\hat{\sigma}_{ij}}{d\vec{p}_T d\eta}$

 $+\sum_{i,j,k=q,g} \int dx_1 dx_2 \ F^A_{i/h_1}(x_1) F^A_{j/h_2}(x_2) \ \frac{dz}{z^2} \ D^{\text{med}}_{\gamma/k}(z,\mu) \ \frac{d\widehat{\sigma}^k_{ij}}{d\vec{n} \ dn}$

François Arleo (CERN)

- Direct photons
 - Drell-Yan like
- Bremmstrahlung photons
 - . jet like

γ quenching

- Much weaker suppression than for the π^0
- Isospin effect not negligible

François Arleo (CERN)

 γ/π^0

• Underestimate at high p_{\perp}

François Arleo (CERN)

RHIC data

 $\omega_c \simeq 20 - 25 \text{ GeV}$

6

RHIC data

$$\omega_c \simeq 20 - 25 \text{ GeV}$$

Mean transport coefficient

(with $\langle L \rangle = 5$ fm)

$$\langle \hat{q} \rangle_{\text{RHIC}} = \frac{2 \,\omega_c}{\langle L \rangle^2} \simeq 0.3 - 0.4 \text{ GeV}^2/\text{fm}$$

6

RHIC data

$$\omega_c \simeq 20 - 25 \text{ GeV}$$

Mean transport coefficient

(with $\langle L \rangle = 5$ fm)

$$\langle \hat{q} \rangle_{\text{RHIC}} = \frac{2 \,\omega_c}{\langle L \rangle^2} \simeq 0.3 - 0.4 \text{ GeV}^2/\text{fm}$$

Initial transport coefficient

(with Bjorken and $t_0 = 0.5$ fm)

$$\hat{q}_{\text{RHIC}}(t_0) \simeq \frac{\omega_c}{t_0 \langle L \rangle} \simeq 1.6 - 2 \text{ GeV}^2/\text{fm}$$

[Baier NPA 2002]

Cold mediumpQCD

[Baier NPA 2002]

- Cold medium
 - ▲ pQCD
 - Drell-Yan and DIS

[Baier NPA 2002]

Cold medium

François Arleo (CERN)

• $\langle \hat{q} \rangle_{\text{RHIC}}$

[Baier NPA 2002]

Cold medium

• $\langle \hat{q} \rangle_{\text{RHIC}}$

• $\hat{q}_{\text{RHIC}}(t_0)$

Naively ...

$\epsilon (t_0 \simeq 0.5 \,\mathrm{fm}) \gtrsim 10 \,\mathrm{GeV/fm^3}$ at RHIC

François Arleo (CERN)

Naively ...

 $\epsilon (t_0 \simeq 0.5 \,\mathrm{fm}) \gtrsim 10 \,\mathrm{GeV/fm^3}$ at RHIC

... but many theoretical uncertainties

- assume a thermalized medium (and at $t_0 = 0.5$ fm !)
- \hat{q} depends on
 - geometry modelling
 - which longitudinal and transverse expansion
- correspondence $\hat{q} \epsilon$ indicative only
Summary

- Energy loss probes dense media
 - Proportional to the medium scattering power
- Energy loss in DIS
 - good description of HERMES and EMC data
 - possible formation time effects probed by CLAS
- Energy loss in heavy ion collisions
 - γ and π^0 at RHIC
 - $\epsilon_{\rm rhic}\gtrsim 50\,\epsilon_{\rm cold}$