Can we distinguish energy loss from hadron absorption?

Alberto Accardi (Iowa State U.)

"Parton Propagation through Strongly Interacting Systems" Trento, Sep. 27th - Oct 7th, 2005

***** Intro: bridging 2 languages

- nDIS vs. h+A and A+A collisions
- a few similarities and differences

***** Hadron attenuation in nDIS - R_M

- hadron absorption model
- energy loss model
- ***** Energy loss vs. absorption
 - The " $A^{2/3}$ power law"
 - cA^{α} fits power law breaking
- * Conclusions

with many thanks to D.Gruenewald

I. Bridging 2 languages

* Aim of this talk: can (1) and (2) be disentangled? is one or the other dominant? when?

★ in h+A collisions:

- no hot matter, very thin "medium"
- exposes initial state nuclear effects

Interplay of nDIS and h+A collisions needed to extract hot nuclear matter effects

***** HERMES kinematics is relevant to RHIC mid-rapidity

...but beware the virtuality...

 $Q^2 = -q^2$ is measured ...and the rapidity... always forward rapidity rapidity can change

II. Hadron attenuation in nDIS

The hadron attenuation ratio

★ HERMES

- Kr and N data are final
- preliminary He, Ne are available
- Xe soon to come

★ JLAB

- Statistics greatly enhanced
- 4π detector
- many targets up to Pb possible
- poorer PID

A. Accardi

Trento, Sep 27th - Oct 7th, 2005

2 frameworks

Z

II.1 Hadron absorption model

Hadron absorption model

(A.A. et al., hep-ph/0502072, NPA in press) see D.Gruenewald's talk

- * Two-step hadronization inside the nucleus:
 - 1) quark *q* neutralizes color \Rightarrow **prehadron** h^*
 - 2) hadron *h*'s wavefunction fully develops

* Average formation lengths $\langle l^* \rangle (z,v)$, $\langle l^h \rangle (z,v)$ from Lund model

Hadron absorption model - 2

(A.A. et al., hep-ph/0502072, NPA in press) see D.Gruenewald's talk

* (Pre)hadron survival probability S_A by transport diff. eqns.

(Pre)hadron-nucleon cross sections:

 σ_h

 $\sigma_* = 2/3 \sigma_h$ - fitted to $e^+ + Kr \rightarrow \pi^+ + X$

- from Particle Data Group

* Full integration over $\gamma * q$ interaction point (b,y)

$$\frac{1}{N_A^{DIS}} \frac{dN_A^h(z)}{dz} = \frac{1}{\sigma^{lA}} \int dx \, d\nu \sum_f e_f^2 q_f(x, Q^2) \frac{d\sigma^{lq}}{dx d\nu} S_{f,h}^A(z, \nu) D_f^h(z, Q^2) \exp(-i\omega t) \frac{d\sigma^{lq}}{dx d\nu} S_{f,h}^A(z, \nu) D_f^h(z, Q^2) + \frac{1}{\sigma^{lA}} \int dx \, d\nu \sum_f e_f^2 q_f(x, Q^2) \frac{d\sigma^{lq}}{dx d\nu} S_{f,h}^A(z, \nu) D_f^h(z, Q^2) + \frac{1}{\sigma^{lA}} \int dx \, d\nu \sum_f e_f^2 q_f(x, Q^2) \frac{d\sigma^{lq}}{dx d\nu} S_{f,h}^A(z, \nu) D_f^h(z, Q^2)$$

Hadron absorption model - results

(A.A. et al., hep-ph/0502072, NPA in press) see D.Gruenewald's talk

Trento, Sep 27th - Oct 7th, 2005

II.1 Energy loss model

★ The quark hadronizes outside the nucleus

* Gluon bremsstrahlung $\Rightarrow \Delta E \Rightarrow$ modified fragment. funct.

$$D_q^h(z,Q^2) \longrightarrow \frac{1}{1-\Delta z} D_q^h(\frac{z}{1-\Delta z},Q^2) \quad ; \quad \Delta z = \Delta E/\nu$$

* New: use quenching weights $P(\Delta z, L)$ with corrections for finite in-medium path L=L(b,y) [Salgado-Wiedemann, PRD68(03)162301]

$$\tilde{D}_{f}^{h}(z,Q^{2};L) = \int_{0}^{(1-z)} d\Delta z \,\mathcal{P}(\Delta z;\hat{q},L) \frac{1}{1-\Delta z} D_{f}^{h}(\frac{z}{1-\Delta z},Q^{2}) + p_{0}(\hat{q},L) D_{f}^{h}(z,Q^{2})$$
prob. of radiating Δz
prob. of radiating no gluons
Accardi
Trento, Sep 27th - Oct 7th, 2005
Page 14

A. Accardi

Energy loss model - realistic geometry

* New: Full integration over $\gamma * q$ interaction point (b,y)

$$\frac{1}{N_A^{DIS}} \frac{dN_A^h(z)}{dz} = \frac{1}{\sigma^{lA}} \int d^2b \, dy \, \rho_A(b, y) \int dx \, d\nu \sum_f e_f^2 q_f(x, Q^2) \frac{d\sigma^{lq}}{dx d\nu} \tilde{D}_f^h(z, Q^2; L(b, y))$$
exp. cuts

 Realistic nuclear density: Woods-Saxon parametrization for A>2 Reid's soft-core for ²D

$$\begin{split} L(b,y) &= 2 \int_{y}^{\infty} dz \, (z-y) \rho(b,z) \, \left/ \int_{y}^{\infty} dz \, \rho(b,z) \right| = R(b) - y \quad \text{for Hard-Sphere} \\ \langle \rho \rangle(b,y) &= \int_{y}^{\infty} dz \, \rho(b,z) \, \left/ L(b,y) \right| = \rho_{HS} \quad \text{for Hard-Sphere} \end{split}$$

Transport coefficient

$$\langle \hat{q} \rangle (b, y) = \hat{q}_0 \frac{\langle \rho \rangle (b, y)}{\rho(0, 0)}$$
 where $\hat{q}_0 = \langle \hat{q} \rangle (0, 0)$

with $\hat{q}_0 = 0.5 \text{ GeV}^2/\text{fm}$ - fitted to $e^+ + \text{Kr} \rightarrow \pi^+ + \text{X}$

Energy loss model - results

III. Energy loss vs. absorption

Energy loss vs. absorption

III.1 The " $A^{2/3}$ power law"

A-dependence - naïve argument

At first order – i.e., for light nuclei:

a) Energy loss (LPM effect): $1-R_M \sim <\Delta z > \sim L^2 \sim A^{2/3}$ very naive, incorrect, but not too wrong... b) Hadron absorption: $1-R_M \sim < no. \ of rescatterings > \sim L \sim A^{1/3}$ WRONG!

 $\Rightarrow \text{ a simple fit of } 1-R_M \text{ to } A^{\alpha} \text{ should} \\ \text{discriminate the 2 models} \end{cases}$

Let's really expand in powers of A^{1/3}

* Approximations for analytic formulae:

- → hard-sphere nuclei ($R_A = r_0 A 1/3$)
- ✤ neglect nuclear effects on ²H

* Energy loss model

- neglect finite size corrections
- → large $\nu \Rightarrow$ neglect boundary in $\int_0^{l-z} d\Delta z$ no energy conservation!

$$1 - R_M^{\text{en.loss}} = \frac{C_F \alpha_s r_0^2}{5} \frac{\hat{q}}{\nu} \left[-1 - z \frac{\partial_z D(z)}{D(z)} \right] A^{2/3} + \text{h.o.t.}$$

coefficient is z-dependent
 \Rightarrow fragmentation dynamics

Energy loss yields $A^{2/3}$ as expected at leading order

where do h.o.t. begin to break $A^{2/3}$?

Trento, Sep 27th - Oct 7th, 2005

Let's really expand in powers of A^{1/3}

***** Hadron absorption model

prehadron formed inside A, hadron outside
 (it's a good approximation, see A.A. et al. NPA720(03)13)

$$1 - R_M^{\text{abs.}} = \frac{2\rho_0 r_0^2}{5} \frac{\sigma_*}{\langle l^* \rangle(z)} A^{2/3} + \text{h.o.t.}$$
fragmentation dynamics

Hadron absorption follows A^{2/3} law, as well!

* to distuinguish energy loss and absorption:

- 1) check breaking of $A^{2/3}$ law
- 2) don't forget the coefficient: it contains dynamics

Why A^{2/3} also for absorption?

* Absorption can, quite generally, be approximated in terms of

$$1 - R_M \approx \frac{\pi \rho_0}{A} \int_0^{R^2} db^2 \int_{-R(b)}^{R(b)} dy \int_y^{\infty} dx \underbrace{\mathcal{P}_*(x-y)}_{y} \left[1 - e^{-\rho_0 \sigma_* \int_x^{\infty} ds \Theta(R(b) - |s|)} \right]$$
prob. distrib. for h* production length

* If $\mathcal{P}_*(x-y) = \delta(x-y) \Rightarrow 1 - R_M = c A^{1/3}$ (e.g. Falter's et al. leading h_{*})

* If not, we have a dimensionful
$$\langle l_* \rangle = \int_0^\infty dx \, x \, \mathcal{P}_*(x)$$

★ After all integrations we obtain an extra power of A:

$$\left(rac{R_A}{\langle l_*
angle}
ight)^n \propto A^{n/3}$$

* Theorem: if \mathcal{P}_* is normalizable $\Rightarrow n > 0$

A. Accardi

Why A^{2/3} also for absorption?

***** Special cases

1)
$$\lim_{x \to 0} \mathcal{P}_*(x) = k \neq 0 \implies 1 - R_M = c A^{2/3} + \text{h.o.t.}$$

[e.g., the presented model
A.A. et al. hep-ph/0502072, NPA]
2)
$$\lim_{x \to 0} \mathcal{P}_*(x) = 0 \implies 1 - R_M = c A^{\alpha} + \text{h.o.t.}$$

[e.g., Kopeliovich et al. NPA...
see Nemchik's talk]
Not too different from case 1)

 $\boldsymbol{\chi}$

III.2 cA^{α} fits

cA^{α} fits

to distuinguish energy loss and absorption:

- 1) check breaking of $A^{2/3}$ law
- 2) don't forget the coefficient: it contains dynamics

the simplest option:

i) choose a set of nuclei $\{A_1, A_1, ..., A_N\}$

- ii) fit $1-R_M(z) = c(z) A^{\alpha(z)}$ as a function of A
 - at fixed z (or v or Q^2)
 - with c and α as free parameters
- iii) draw a 2σ confidence contour in the (*c*, α) plane
- Example: absorption model at z = 0.75
 with {He, N, Ne, Kr} included in the fit

The power of cA^{α} fits

• sensitive to model assumptions E.g., pure absorption vs. absorption plus partial quark deconfinement:

 $Q^2 \rightarrow \xi(A,Q^2) \times Q^2$ \Rightarrow rescaling similar to Kopeliovich's

but different physical justification

sensitive to model parameters

E.g., energy loss with $\hat{q}_0=0.3 \text{ GeV}^2/\text{fm}$ vs. $q_0 \triangleq 0.7 \text{ GeV}^2/\text{fm}$

Trento, Sep 27th - Oct 7th, 2005

HERMES vs. theory - π +

Data and absorption are consistent with A^{2/3} - en.loss not really

Absorption and z-shifted en.loss mimick each other
 not possible to distinguish (separate) the 2 mechanisms

Absorption and Q²-shifted energy loss seem different
 cA^α fits may test in which proportion they contribute

cA^a fits are a meaningful test of theory models

When correct physics is established they will help in cross-checking it and its model implementation

Need for more exclusive observables and data on different hadron flavours

The future: HERMES + JLAB

Let's imagine to have many more targets: N,Ne,Kr,Xe from HERMES C,Fe,SnW,Au,Pb from JLAB

Full set of targets

- shrinks contours
- constant a is good

The future: HERMES + JLAB

IV. Perspectives and conclusions

What about ω , η , ϕ ?

• What about heavyer mesons - ω , η , ϕ ?

Energy loss with hadronization outside

1) similar quark content as π : ω , η , $\phi = c_1(uu+dd)+c_2(ss)$

- 2) s quark is subdominant in HERMES and JLAB kinematics
- 3) \Rightarrow similar attenuation to π (but beware the fragm. fn.)

Absorption point of view:

- 1) heavy \Rightarrow produced earlier than $\pi \Rightarrow$ longer in-medium path
- 2) earlier breakdown of $A^{2/3}$ (extreme: $< l^* >= 0 \implies A^{1/3}$)
- 3) However... ϕ has small hadronic cross-sections
 - \Rightarrow smaller attenuation, compensates for 1) and 2)

What about ω , η , ϕ ?

• Can ω , η , ϕ be measured at JLAB?

CLAS++ detector [W.Brooks, FizikaB13(04)321]

hadron	c au	mass	flavor	detection	production rate
		(GeV)	content	channel	per 1k DIS events
π^0	25 nm	0.13	$u\bar{u}dd$	$\gamma\gamma$	1100
π+	7.8 m	0.14	ud	direct	1000
π~	7.8 m	0.14	$dar{u}$	direct	1000
▶ η	0.17 nm	0.55	$u ar{u} dd s ar{s}$	$\gamma\gamma$	120
ω	$23 \mathrm{fm}$	0.78	$u ar{u} dd s ar{s}$	$\pi^+\pi^-\pi^0$	170
η'	0.98 pm	0.96	$u ar{u} dd s ar{s}$	$\pi^+\pi^-\eta$	27
$ ightarrow \phi$	44 fm	1.0	$uar{u}ddsar{s}$	K^+K^-	0.8
K^+	$3.7 \mathrm{m}$	0.49	$u\bar{s}$	direct	75
K^{-}	$3.7 \mathrm{m}$	0.49	\overline{us}	direct	25
K^0	27 mm	$\overline{0.50}$	$d\bar{s}$	$\pi^+\pi^-$	42
	hadron π^0 π^+ π^- η ω η' ϕ K^+ K^- K^0	hadron $c\tau$ π^0 25 nm π^+ 7.8 m π^- 7.8 m η 0.17 nm ω 23 fm η' 0.98 pm ϕ 44 fm K^+ 3.7 m K^0 27 mm	hadron $c\tau$ mass (GeV) π^0 25 nm0.13 π^+ 7.8 m0.14 π^- 7.8 m0.14 π^- 7.8 m0.14 η 0.17 nm0.55 ω 23 fm0.78 η' 0.98 pm0.96 ϕ 44 fm1.0 K^+ 3.7 m0.49 K^- 3.7 m0.49 K^0 27 mm0.50	hadron $c\tau$ massflavor (GeV) π^0 25 nm0.13 $u\bar{u}dd$ π^+ 7.8 m0.14 ud π^- 7.8 m0.14 $d\bar{u}$ π^- 7.8 m0.14 $d\bar{u}$ η 0.17 nm0.55 $u\bar{u}dds\bar{s}$ ω 23 fm0.78 $u\bar{u}dds\bar{s}$ η' 0.98 pm0.96 $u\bar{u}dds\bar{s}$ η' 0.98 pm0.96 $u\bar{u}dds\bar{s}$ ϕ 44 fm1.0 $u\bar{u}dds\bar{s}$ K^+ 3.7 m0.49 $u\bar{s}$ K^- 3.7 m0.49 $\bar{u}s$ K^0 27 mm0.50 $d\bar{s}$	hadron $c\tau$ massflavordetection (GeV) contentchannel π^0 25 nm0.13 $u\bar{u}dd$ $\gamma\gamma$ π^+ 7.8 m0.14 ud direct π^- 7.8 m0.14 $d\bar{u}$ direct π^- 7.8 m0.14 $d\bar{u}$ direct π^- 7.8 m0.14 $d\bar{u}$ direct γ 0.17 nm0.55 $u\bar{u}dds\bar{s}$ $\gamma\gamma$ ω 23 fm0.78 $u\bar{u}dds\bar{s}$ $\pi^+\pi^-\pi^0$ γ' 0.98 pm0.96 $u\bar{u}dds\bar{s}$ $K^+\pi^-\eta$ ϕ 44 fm1.0 $u\bar{u}dds\bar{s}$ $K^+K^ K^+$ 3.7 m0.49 $u\bar{s}$ direct K^- 3.7 m0.49 $\bar{u}s$ direct K^0 27 mm0.50 $d\bar{s}$ $\pi^+\pi^-$

Baryon sector

"**Baryon anomaly**" = difference between mesons and baryons production not understood in conventional models (e.g., pQCD)

Baryon sector

Almost no model is able to reproduce the proton's rise at low-z
 baryon anomaly also in nDIS! (what about antibaryons?)

What is nDIS teaching us about the baryon anomaly?
 same mechanism in nDIS and h(A)+A ?

(Baryon stopping? [Kopeliovich] - String flip? [Grygorian])

Baryon sector

Baryon vs. antibaryons

Is the baryon anomaly in nDIS only for protons?
 (at RHIC R_{dAu} and R_{AuAu} similar for p and Λ)

 \bullet A is accessible at HERMES - what about JLAB?

	hadron	c au	mass	flavor	detection	production rate
			(GeV)	content	channel	per 1k DIS events
?	p	stable	0.94	ud	direct	1100
	$ar{p}$	stable	0.94	$ar{u}ar{d}$	direct	3
•	→ A	79 mm	1.1	uds	$p\pi^-$	72
	$\Lambda(1520)$	13 fm	1.5	uds	$p\pi^-$	-
	$\sum +$	24 mm	1.2	us	$p\pi^0$	6
	Σ^0	22 pm	1.2	uds	$\Lambda\gamma$	11
		87 mm	1.3	us	$\Lambda \pi^0$	0.6
	anna anna anna	49 mm	1.3	ds	$\Lambda\pi^{-}$	0.9

CLAS++ detector [W.Brooks, FizikaB13(04)321]

A. Accardi

Heavy flavours ?

Heavy flavour puzzle at RHIC [QM2005, STAR, Djordjevic, Armesto]

 \Rightarrow single non-photonic e^- as much suppressed as π

- → e^- comes from *D* and *B* mesons ⇒ *c* and *b*-quarks
- \rightarrow use NLO pQCD rates for *c* and *b* + heavy quark energy loss theory

⇒ theory gives half of the observed suppression! (but compatible with c-quark suppression only...)

- "If STAR R_{AA}(e⁻) is confirmed, it will be a theoretical challenge to devise novel energy loss mechanisms able to explain these data." M.Djordjevic, QM2005
- Can JLAB measure identified D mesons?
 study of c-quark attenuation in cold matter
 help in solving heavy flavour puzzle

More exclusive observables

<p_T²> broadening [see Nemchick, Hayashigaki, Kopeliovich talks]
 1) Directly proportional to quark's in-medium path
 2) Can measure production time t_p

3) Detect hadronization inside or outside the nucleus

More exclusive observables

double hadron attenuation [see Falter, Muccifora]

Can we invent new observables?

E.g., pT-broadening is sensitive only to quark propagation: can we invent an observable which is sensitive to prehadron absorption only?

Something else??

Conclusions

***** Hadron absorption predicts $R_M \sim A^{2/3}$ as well,

not as easy as naively thought to separate it from energy loss

***** Analysis in terms of cA^{α} fits proposed

- meaningful test of theory models
- will help in cross-checking theory ideas of interplay of absorption and energy loss effects
- $\alpha = \alpha(A)$ at large A breaking of a simple A^{α} law

***** For future experiments

- Use a few more targets to complete the light-to-heavy scan and allow precise cA^α fits
- Concentrate resources on collecting high statistics to access
 - 1) heavy unflavoured mesons (ϕ, η, ω)
 - 2) charmed mesons (D) \rightarrow help for charm/bottom puzzle at RHIC
 - 3) other baryons (Λ) \rightarrow light on baryon anomaly
 - 4) more exclusive observables (pT-broadening, Cronin vs. *z* , 2 particle correlations,...)

A. Accardi

The end

A note on "energy loss"

Many phenomena, the same name, the same effect (hadron attenuation at high-z)

★ Gluon bremsstrahlung

Hadron-nucleon rescatterings

 * "Missed" hadronization in a colour screening medium

a) vacuum

Let's push the analogy

lepton *e* initial and final momenta are measurable

quark q' initial and final momenta are not

Closest analogy of h(A)+A with DIS:
measure 2 hadrons from q and q' fragmentation
some control over Q² (needs also u- and s-channels)
needs convolutions over z' in pQCD formuale