# CLAS12 PID

#### S. Stepanyan (JLAB)

CLAS12 RICh, Jefferson Lab, January 28-29 2008

- CLAS12 and PID detectors
- Charge hadron identification in forward region
- Neutral particle detection and identification
- $e/\pi$  separation
- Charge hadron identification in the central detector





#### CLAS12

|                                  | Forward detector                                                     | Central detector      |  |
|----------------------------------|----------------------------------------------------------------------|-----------------------|--|
| Angle range<br>tracks<br>photons | 5 <sup>0</sup> - 40 <sup>0</sup><br>3 <sup>0</sup> - 40 <sup>0</sup> | 42º – 135º<br>NA      |  |
| Resolution                       |                                                                      |                       |  |
| dp/p                             | 0.005-0.01                                                           | $dp_{T}/p_{T} = 0.02$ |  |
| δθ <b>(mr)</b>                   | <1                                                                   | < 8                   |  |
| δφ <b>(mr)</b>                   | < 3                                                                  | < 2                   |  |
| Photons                          | E>0.2 GeV                                                            |                       |  |
| dE/E                             | 0.1/ E <sup>1/2</sup>                                                | NA                    |  |
| <b>δθ (mr)</b>                   | 4 (@ E=1GeV)                                                         | NA                    |  |
| Neutrons<br>efficiency           | 0.1 to 0.75                                                          | 0.05                  |  |

Geared towards deeply exclusive and inclusive electroproduction reactions





### Detectors used for PID





### Cherenkov counters

| HTCC (new detector):<br>Working gas<br>Angular coverage<br>Mirror type<br>e-threshold<br>π-threshold                                         | CO <sub>2</sub> @ 1 atm<br>8° to 35°<br>Ellipsoidal<br>15 MeV<br>4.9 GeV                  | $e/\pi$ separation at P < 4.9 GeV/c<br>Will be used in the trigger                       |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| LTCC (existing detector,<br>will be modified)<br>Working gas<br>Angular coverage<br>Mirror type<br>e-threshold<br>π-threshold<br>K-threshold | C4F10 (or C4F8O)<br>8° to 35°<br>Ellipsoidal/hyperbolical<br>10 MeV<br>2.6 GeV<br>9.3 GeV | Aids $e/\pi$ separation at P < 2.6 GeV/c<br>$\pi/K$ and $\pi/p$ separation P > 2.6 GeV/c |







**SCIENCE** CLA



# Charged hadron ID: forward detector



Technically, there is a gap in that region of CLAS12 PID, BUT ...





# (K<sup>+</sup>,p) kinematics at 11 GeV

High energy kaons will be produced at small momentum transfer (*t*) in the processes such as e.g. KY or KKN

In high energy diffractive processes production of energetic recoil nucleon is highly suppressed



### Neutron, $\gamma$ , and $\pi^0$ detection

For neutron identification and momentum measurements, time-of-flight from the target to EC planes will be used. At time resolution ~0.3ns – 0.4 ns neutrons with P<3 GeV/c can be identified

Added pre-shower calorimeter (PCAL with 15 lead-scintillator layers) will allow to retain good energy resolution for up to 11 GeV/c



# Neutron, $\gamma,$ and $\pi^0$ detection in PCAL+EC

Two cluster reconstruction from high energy  $\pi^0 \rightarrow \gamma \gamma$  decays

Neutron detection efficiency





# $e/\pi$ separation

□ LTCCxHTCCxEC for P < 2.7 GeV/c (will be used in the trigger)

□ HTCCxEC for P < 4.9 GeV/c

**C** EC for P > 4.9 GeV/c (will require  $\pi$ /e rejection better than 1%)





S. Stepanyan CLAS12 RICh, Jefferson Lab, January 28-29 2008



#### Central detector





p/K separation at P > 1.2 GeV/c is not a problem, in most cases recoil nucleon will be detected.

 $\pi/K$  at P > 0.7 GeV/c is an issue, background to KK final states comes from  $\pi\pi$  production





# Summary of CLAS12 PID

- Charged hadrons:
  - □ fTOF (L>650 cm,  $\sigma_t$  < 100 ps) and LTCC (P<sub>π</sub>>2.7 GeV/c) cover the full range of kinematics for  $\pi/K$  and  $\pi/p$  separation
  - fTOF will provide  $3\sigma 4\sigma K^+/p$  separation for P<5 GeV/c, above 5 GeV/c proton yield is expected to be insignificant
  - $\hfill \label{eq:ctop}$  cTOF (L=25 cm 40 cm,  $\sigma_t$  = 50 ps), good for  $\pi/K$  separation for P < 0.7 GeV/c
- Neutrons and photons will be detected and identified in PCAL-EC
  - □ neutron detection efficiency 0.1 to 0.75, ID range P < 3 GeV/c
  - photons will be detected with good energy resolution for up to 11 GeV
- Excellent  $\pi/e$  separation for P<4.9 GeV/c, for P > 4.9 GeV/c ~1%

#### Well designed system





# RICH for CLAS12

- For the forward detector, if covers the full acceptance region (all 6 sectors)
  - can improve overall PID quality
  - will provide K<sup>+</sup>/p separation for P>5 GeV/c for specific, low cross section processes
  - will help to suppress accidentals

Two proton events from CLAS/e2 carbon run. Protons identified using energy loss in TOF counters.

 $\delta t - time \ between \ the \ electron \ and \ proton \ in \ the \ event$ 



For the central detector, in the region of 40° to 60°, areogel radiator RICH can work for  $\pi/K$  ID for P > 0.7 GeV/c



