Cascade Spectroscopy at CLAS/CLAS12

Lei Guo, JLAB

for CLAS Collaboration

- Overview: Cascade physics is underexplored, and offers potential discovery
- Ground state $\Xi(1320): \gamma \mathbf{p} \rightarrow \mathbf{K}^+ \mathbf{K}^+(\Xi^-)$
 - □ Few photon data existed. New CLAS g11 data:~70/pb⁻¹, E₀=4.0186 GeV
 - Cross section measurement:
 - \Box Production mechanism probe (Y* $\rightarrow \Xi$ K?)
- Search for excited E states
 - $\square \gamma \mathbf{p} \rightarrow \mathbf{K}^+ \mathbf{K}^+ \pi^-(\Xi^0)$ analysis
 - Future Spin-Parity measurement
- Summary

Overview

- Cascade spectroscopy
 - \star Only 6 states with 3(4) stars
 - ★ Most without spin-parity assignment
- > Experimental verification of the Ξ^* decoupling from $\Xi\pi$ predicted by Chao, Isgur, Karl

\star Main reason of narrow width of Ξ resonances

- Can baryons in certain SU(6)⊗O(3) multiplets be seen in the cascade spectrum, but missing in Nπ/NK⁻ scattering data?
- Isospin-violating mass differences of \(\mathcal{E}^*\): do they agree with quark model/lattice predictions?
 - ★ Not feasible in N* sector
- ★ Photoproduction at JLAB offers unique alternative

CEBAF Large Acceptance Spectrometer@JLAB

CLAS Detector

Tagger

Jan. 28, 2008

Search for $\Xi^{-*} \rightarrow \Xi^{0} \pi^{-}$

- Few excited cascade states observed
- CLAS ideal for Ξ^{-*} in exclusive reaction:
 - $\gamma p \longrightarrow K^+ K^+ \pi^-(\Xi^0)$
- Accessible Ξ* states:
- Complicated by background processes:
 - $\Box \quad \gamma p \longrightarrow \mathsf{K}^{+} \mathsf{K}^{*} (\Xi^{0})$
 - $\Box \quad \gamma p \longrightarrow \mathsf{K}^+ \mathsf{Y}^*, \ \mathsf{Y}^* \longrightarrow \mathsf{Y}^{*'} \pi^-, \ \mathsf{Y}^{*'} \longrightarrow \mathsf{K}^+ \Xi^0$

Excited	Mass	Width	Ξπ
cascades	(GeV/c²)	(MeV/c ²)	BR
E ⁻⁰ (1530)	1.535	9.1	100%
Ξ ⁰ (1620) (*)	1.6-1.63	~22	Ξπ
() Ξ ⁻⁰ (1690)	1.69	<30	seen
(***)			

First observation of $\Xi(1690) \rightarrow \Xi \pi$

Jan. 28, 2008

CLAS data: $\gamma p \rightarrow K^+ K^+(X^-)$

Phys.Rev.C76:025208 (2007)

With multiple Kaons in the final state, pion-veto is essential

- 1-sector RICH: 30% background suppression (2K⁺)
- 2-sector: 56% background suppresion

Jan. 28, 2008

Hyperon candidates decaying to KE

Jan. 28, 2008

Hadronic model for cascade photoproduction: Oh-Nakayama-Haberzettl model:

Radiative transition processes, various t,s channel processes

Only K and K* exchange included

Model includes low-lying N*/ Δ /Y*

Y: $J^{P} = 1/2^{-}$ and $3/2^{+}$ hyperon resonances

Phys.Rev.C74:035205,2006

(i)

Ξ^- differential Cross sections compared with Oh-model: d σ /dcos(θ_{Ξ})

Jan. 28, 2008

Interesting features of $M(\Xi K)$ spectra

- Statistics insufficient to be conclusive
- Not inconsistent with multiple Y*→ΞK
- d_σ strength independent of E_γ at low M(ΞK): Diffractive process?
- Early bubble chamber
 K⁻p data suggestive

Polarization variables necessary to determine production mechanism

Total cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$

Oh-model used earlier preliminary results (NSTAR05)

SLAC measurement: 117 ± 17 nb from inclusive reaction (K. Abe et al., Phys. Rev. D32, 2869 (1985) Jan. 28, 2008

$\Xi^{-}(1530)$ Cross section results

Differential cross section

Total cross section: E_{γ} : 3.35-3.85 GeV σ :1.13± 0.27nb E_{γ} : 3.85-4.75 GeV s:1.77 ± 0.40nb

E_γ: 3.35-3.85 GeV

$\gamma p \rightarrow K^+ K^+ \Xi^{-*}, \Xi^{-*} \rightarrow \pi^- \Xi^0$

$M(\Xi^{-})-M(\Xi^{0})=5.5\pm1.8MeV$

Clean sample of Ξ events

Ξ^{-} (1320) polarization transfer Phtoproducing polarized Λ Acceptance corrected decav

P $\frac{s}{d}$ $\frac{s}{d}$ K^{+}

Acceptance corrected decay angular distribution (Helicity frame)

- E can be similarly produced polarized along production plane norm
- Very sensitive to production mechanism

No polarization expected in helicity frame

Kinematic fitting results

$\Xi^0\pi^-$ invariant mass spectrum

Jan. 28, 2008

Spin-Parity determination of Ξ^{*}

- Spin can be measured by angular distributions (PWA)
- Parity measurement challenge: Minami ambiguity Ξ*→Y (1/2⁺) + M₁ (0⁻): two solutions J^{±P}
- Double Moment Analysis (DMA)

Y (1/2⁺) → B (1/2⁺) + M_2 (0⁻)

Double moments: H(ImLM)= $\Sigma D^{L}_{Mm}(\theta_1, \phi_1) D^{I}_{m0}(\theta_2, \phi_2)$

DMA:

$$H(11LM) = P(-1)^{J+\frac{1}{2}} \frac{2J+1}{\sqrt{2L(L+1)}} H(10LM)$$

Linear dependence gives simple, mutiple tests for J, P For any odd L≤2J and M≤L

Parity measurement of $\Xi(1820)$

Fig. 4a, b. As in Fig. 3, but for the decay sequence $\Xi(1820) \rightarrow \Lambda \overline{K}^0$, $\Lambda \rightarrow p\pi^-$

Excited states

high energy data: $\gamma p \rightarrow K^+ K^+ \Xi^{-*}, \Xi^{-*} \rightarrow K^- \Lambda/\Sigma$

Jan. 28, 2008

Prospects at CLAS12

Photoproduction of cascades □ E₀~6.6 GeV: M(Ξ*-)~3GeV □ E₀~6.6 GeV: M(Ξ*-)~2.6 GeV

 \Box K/ π /P separation up to 5 GeV

- Polarization measurement
 - Extracting production mechanism information
 - □ Hadronic picture/Quark-gluon framework
- Spin-parity measurement
 - □ Necessary to establish resonances

Summary and outlook

- CLAS good instrument for Cascade photoproduction
- $\Xi^{-}(1320)$ cross section obtained for E_{γ} =2.8~4.7 GeV ($\sigma(E_{\gamma}) \propto E_{\gamma}$?)
- Data suggestive of t channel production of Y*→ Ξ⁻ K⁺
- Polarization variables essential to understand production mechanism
- RICH detector will significantly improve data quality, and make J^P measurements easier.

Reaction $\gamma p \rightarrow K^+ K^+(\Xi^-)$ Misidentified pion background

Background events with K⁻ detected

Jan. 28, 2008

Ξ^- differential Cross sections d σ /dcos(θ_K)

Ξ^- differential Cross sections: d σ /dM(KK)

Ξ^- differential Cross sections $d\sigma/dM(K\Xi)$

$\gamma p \rightarrow K^+ K^+ \Xi^{-*}, \Xi^{-*} \rightarrow \pi^- \Xi^0$ background events

Using out-of-vertex events for background estimate

Simulation: $\gamma p \rightarrow K^+ K^+ \Xi^{-*}, \Xi^{-*} \rightarrow \pi^- \Xi^0$ Comparing M(K⁺ π^-): MC VS data

Up to 30% events could be K*

Jan. 28, 2008

Possible additional background: $\gamma p \rightarrow K^+ K^* \Xi^0$

Simulation parameters: M(Y*)=1.9GeV G(Y*)=120MeV Other bg processes not included

Peaking around 1.6GeV