RICH detectors with aerogel

R. DE LEO, Bari Univ., deleo@ba.infn.it

Optical properties of aerogel → radiator of RICH
 contributions to δθ_c from aerogel in a RICH
 performance of the aerogel focalized RICH of HERMES
 HERMES RICH long-term performance stability
 performance of the aerogel focalized RICH-1 of LHCb
 BELLE: aerogel radiator in a proximity focus RICH

CLAS12 Rich Detector Workshop @JLab, Jan.29th, 2008

Aerogel RICH story: optical property improvemets vs time

improve of transmittance: n=1.03, t=1cm

wavelength (nm)

year	A	С	producer	Λ (0.4μm)
'07			Novosibirsk	5 cm
'02	0.96	0.005	Novosibirsk	4 cm
'96	0.95	0.01	Matsus hita	2.3 cm
'80	0.8	0.02	Airglass	1 cm

Λ attenuation length '95 T.Ypsilantis, J.Seguinot, NIMA368(1995) '96: first focalized RICH with aerogel at CERN CERN-Bari-Milan-Rome- coll. @ PS-T9 beam

'96: 5cm of Matsushita aerogel, π^- 10GeV/c

RICH: SemiInclusiveDIS ('98 - '07) 2)

7

 $Z = E_{\rm h}/v$

'97: the HERMES dual radiator RICH proposal

- focalized R = 2.2 m
- n(aerogel)=1.03, θ_{c} =242 mrad
- $n(C_4F_{10}) = 1.00137$
- Npe (aeroge) = 10
- $\delta\theta/\theta(/ring) = 1.2\% (4.1\% / pe)$
- $\delta \theta$ (/ring) = 3 mrad
- $\theta_{C}^{\pi} \theta_{C}^{k} (4 \text{GeV}, n = 1.03) = 9 \text{ mrad}$

Designing a RICH

Aerogel wall

- Array of 425 tiles/half
- Stacks of 5 tiles
- Black tedlar foil around edges
- Lucite end window
- Dry N₂ atmosphere

^{ere} Dry N₂ flow in aerogel! Hydrophobic aerogel from Matsus<u>hita</u> !

Designing a RICH

Mirror array

- Spherical array
- 4×2 mirror segments
- Focal length = 110 cm
- Graphite fibre composite

Designing a RICH

Photon detector

- Based on SELEX design
- 1934 PMTs/half in hexagonal close-pack
- Philips XP1911/UV green enhanced
- Soft steel matrix for magnetic shielding

0.75" PMT → dominant pixel contrib.

λ (nm)

Photon detector

Photon detector PMT photo eathede Light collecting funnels to cover 92% of focal PMT funn plane 15 mm PMT 23.3 mm Efficiency 6 Total 0.8 3-bounce A 2-bounce 0.7 funnels: 0.6 □ 1-bounce 0.5 n Direct pixel contrib.even larger! OCCORCE OCO 0.4 ¹Singlesse 0.3 0.2 0.1 0

Incident angle (rad)

Photon detector

Read-out system

- PCOS4 system Like MCs
- Digital read-out
- Threshold = 0.1 p.e.

PMT's: fired-not fired!

hermes

hermes

12 km of cables

hermes

Timelines

- November 96: original discussions
- December 96: first HERMES RICH-meeting
- March 97: proposal accepted by HERMES
- Spring-summer 97:
- Autumn 97: test aerogel-PMT prototype @ CERN
- March 98: test PMTs
- Easter 98: start assembly
- May 98: install 2 RICH-detectors
- August 98: first rings

Recognizing rings

- Difficult alignment procedure
 - aerogel tiles
 - mirror position, tilt, segments
 - focal plane

Recognizing rings

k

misidentified as

Difficult alignment procedure

aerogel tiles

Ac

mirror position, tilt, segments π focal plane ٩ Reconstruction of Čerenkov angles: IRT, DRT TOP RICH 0.8 P^{π}_{π} $\mathsf{P}^{\pi}_{\mathsf{K}}$ $\mathsf{P}^{\pi}_{\mathsf{P}}$ 0.6 0.4 0.2 Q π 0.8 P_{π}^{K} P_p^k 0.6 Pĸ BOTTOM RICH 0.4 0.2 0.8 P^ρ_π Ρĸ 0.6 0.4 Κ 0.2 0 5 10 15 10 5 10 5 15 15 P (GeV)

nov. '98

HERA experiments get RICH

GRAN SASSO

The Italian laboratory's MACRO muon detector is adding to the evidence for neutrino oscillations

HIGH-ENERGY CULTURE

Why is it so difficult to convey the excitement of new developments in quantum physics to the layman?

PARTICLES FOR EXPORT

In the quest to understand neutrinos, particle beams from CERN may be fired 730 kilometres to Italy

Cher. γ 's \rightarrow photoelectrons

 $T \rightarrow$

geometrical contributions to $\delta \theta_{\mathbf{C}}$

1) pixel
$$\left(\frac{\delta\theta}{\theta}\right)_{\text{pixel}} = \left(\frac{D}{4R}\right) = 2.30 \% /\text{pe}$$

2) focal plane

a)
$$(\vartheta\theta/\theta)_{\text{opt.aber.}} = (d/R)^2 = 0.5\%$$

 $\vartheta\theta = \sigma/2R(\vartheta\theta/\theta)_{\text{surf.imp.}} = 0.3 \%$

a)+b) $(\vartheta\theta/\theta)_{\text{mirror}} = 0.6 \% / \text{pe}$

0.016 0.014 0.012 mirror alignment^{*}

3) point emiss. $(\vartheta\theta/\theta)_{\text{point}} = 0.7 \% / \text{pe}$

aerogel opt. properties contrib.s to $\delta \theta_{\textit{C}}$

- \cdot 1) n dispersion in the different tiles
- 2) chromatic dispersion $n(\lambda)$
- 3) forward scattering
- 4) tile surface irregularities

aerogel Selected 850 tiles over 1200 11x11x1 cc from Matsushita 2 planes, 5 rows, 17 columns, 5 layers

one aerogel radiator

Optical characterization of n=1.3 aerogel of the HERMES RICH E.Aschenauer et al., Nucl. Instr. and Meth. A440 (2000) 338

1) n dispersion (633 nm)

2) chromatic dispers.: n (λ) meas.

3) forward scattering

- due to large inhomogeneities (a_{c}) of ϵ , mostly on the surfaces
- responsible of fuzzy vision of objects through aerogel
- influence dNpe/d9 not Npe
- forward peaked (≠ Rayleigh isotropic)
- dep. on pH of solvent used in gel

4) surface irregularities

exp.- calc. angle resolution (%)

- Pixel
- Mirror
- Point emiss.

2.3

1.3

0.4

0.4

- n disp.
- Chromatic
- Forw.Scatt.
- Surface
- Total (calc.)/pe 2.9
- Total (exp.)/pe 3.3
- Npe (exp.) 10

 $\theta_{C ring} \rightarrow n (e^+ > 5GeV) plot vs day$

average n (e⁺>5GeV)

 $\Delta n \approx 1*10^{-4}$ in the last 5 years!

pe reconst.starting point distribution

3055

e > 5 GeV

The LHCb detector

Forward spectrometer (running in pp collider mode). A dedicated B-physics experiment at the LHC

K/ π separation 2-150 GeV/c

42

The RICH Radiators

Neville HARNEW, RICH2007 15-20 October, Trieste

RICH-1 LHCb

BINP-Novosibirsk: 20x20x4 cm³ n=1.03 hygroscopic A=0.96 C=0.005 (t=4 cm) Λ (400 nm) = 4 cm The PhotoDetectors

ØBialkali Photocath. D=110 mm, QE(320nm)>20%
ØOverall D=125 mm 82% active area
Ø voltage -16 KV
ØElectron optics: cross-focussed
Ø demagnification 2.3
ØAnode: Si pixel :1 mm x 1 mm (320x32 matrix) 2048 pixels, size at photocath. 2.5 x 2.5 mm²

pixels, size 2.3 x 2.3 mm²

4 HPD & AEROGEL from Novosibirsk: test beam C.Matteuzzi, INFN Milano

	N _{pe} yiel	d
	No filter	Filter D263 (0.3 mm)
4 cm DATA MC	9.7 11.5	6.3 7.4
8 cm DATA MC	12.2 14.7	9.4 10.1

t=4 cm Npe ~ 10

Angular resolution

δθ/θ(/pe)(%) and Npe for HERMES with old (t=5cm A=2.3 cm) and new (t=4cm A=4cm) n=1.03 aerogel old (1") and new (2.5x2.5mm²) pixel size

	old	new	³⁰ E						
• Pixel	2.3-	-0.3	E						1
• Mirror	0.6	0.5	25				•		-
• Point emiss.	0.7	0.6	:						1
• n disp.	0.5	0.5	20 -		ne	w•			-
Chromatic	1.3	1.4←	E						
• Forw.Scatt.	0.4	0.4	Npe		•		HER	MES	-
• Surface	0.4	0.4	i			e	T.		
• Total (calc.)/pe	2.9	1.8	10				RMES	Fxp	-
• Total (exp.)/pe	3.3	(2.0)	-	•					
• Npe (calc.)	12	18	5	ø					-
• Npe (exp.)	10	(15)							1
• Total /ring	1.1	0.55	0		2 4	₄ t(c	:m) (8	1U
6 σ k/ π sep. (4 GeV) 47									

BELLE upgrade (KEK $L=10^{34} \rightarrow \approx 2*10^{35}$)

BELLE Aerogel RICH R&D

Chiba-KEK-Nagoya-Ljubljana coll.

focusing

proximity focus

'02 beam test results

- New aerogel from Matsushita & Chiba-U.
- $\Lambda(400nm) = 3 \text{ cm}, n = 1.05, t = 2 \text{ cm}$
- H8500-M64 PMT flat panel, 6x6 mm2 pixel,
- very clean rings observed !
- $\delta \vartheta / \vartheta = 4.5$ %/pe, Npe = 6.3, $\delta \vartheta (/ring) = 5.6$ mrad
- θ_{π} - θ_k (4GeV, n=1.05) = 23 mrad \rightarrow 4 σ sep. possible
- $\delta \theta/\theta(/pe)$ accounted by point-emiss. & pixel contr.s

RICH with Multilayer Radiators

NIM A548(2005)383

- Demonstration of principle
 - 4×4 array of H8500 (85% effective area)

 π/K separation with focusing configuration ~ 4.8 σ @4GeV/c

Toru lijima, RICH2007 @ Trieste

n multilayer aerogel

aerogel RICH summary

aeroRICH	CERN-test	HERMES	HER(new) BELLI	E BELLE	
year	'96	'98	'02	'04	'07	
type	foc.	foc.	foc.	prox.	prox-2lay	. S
n	1.03	1.031	1.03	1.05	1.047-1.057	7
Λ (cm)	2.3	2.3	4	4.5	5	1
t (cm)	5	5	4	2	2	ļ
δθ/θ (%)(/pe)	8	3.3	(2.0)	4.5	4.6	
Npe	12.8	10	(15)	6.3	10	
δθ/θ (%)(/ring	g) 2.3	1.1	(0.55)	1.9	1.5	