An Overview of RICH Detectors From PID to Velocity Spectrometers

Peter S. Cooper, Fermilab January 29, 2008

Goal - a broad overview for this afternoon's session

- I. Introduction
- II. Recent RICH history. A review of some experiments and their design considerations
- III. RICH design criteria.
- IV. Advanced techniques
- V. Conclusions

Ring Imaging CHerenkov Counters

- Cherenkov light is emitted when a charged particle exceeds the speed of light in a medium (Cherenkov 1934, Cherenkov, Tamm & Frank, 1958 Nobel prize).
- RICH concept invented by Art Roberts Nim <u>9</u> (1960) 55.
- <~1980
 - Single PMT threshold counters
 - Multi cell threshold counters
 - Differential counters ("analog" RICHs)
- 1980s
 - First RICHes
 - Omega (WA62) RICH at CERN
 - E665 RICH in muon experiment at FNAL
 - TMAE wire chambers as UV single photon detectors
 - Performance problems
 - PMTs too big and expensive for 1000+ pixel systems

RICH Design Equations

- Cherenkov threshold equation $\cos \theta_c = 1/\beta n$
- All light is emitted at a fixed Cherenkov angle to the direction of flight of a particle.

 $\theta_c = \text{sqrt} [2\delta - 1/\gamma^2]$ $\delta = n-1$ radiator index of refraction

$$N_{pe} = N_0 L \theta_c^2$$

γ particle velocity L radiator length figure of merit

Transforming that light to the focal plane of a mirror transforms a ring in angle space to a ring in coordinates. $R = F \theta_c$ F mirror focal length

 N_0

- Single photon counting statistics really applies (no charge sharing) $\sigma_{} = \sigma_{B} / \text{sqrt}(N_{pe})$ σ_{B} photon pixel resolution
- Isochronous all photons reach the focal plane at the same time

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

SELEX Experiment at Fermilab

Data taken 1996-7 in P-center @ FNAL

- Particle ID was critical Separate charm from combinatoric background Separate baryons from mesons $\Lambda_c^+ \rightarrow p \ K^- \pi^+$ $D^+ \rightarrow \pi^+ K^- \pi^+$
- Full coverage above 22 GeV ($x_F > 3\%$)
- Good $p / K / \pi$ separation required
- $\theta_c = 11.34 \text{ mrad}, \gamma_{th} = 88, \pi \text{ threshold } 12 \text{ GeV/c}, \text{ Gas: Neon @ 1atm}$

Forward charm $x_F > 0.1$ $\pi^- p$ and Σ^- beams, 600 GeV Typical boost ~100 RICH PID above 22 GeV 20 plane - 4 view svx - $\sigma > 4 \mu m$

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

Multi-pixel PMT RICH

a good, old, idea

Requires radiator (usually gas) mirror position sensitive photon detector (a pmt array)

I designed this one for Selex, the charmed baryon experiment.

Physically The counter is 10 m + Long ~ 1 m in dismeter with a lingle 36' spleanch. Minnon. Essentially Just like TL. E-715 counter only a little bigger

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

Overview of	
RICH Detectors	5

A* RICH COUNTER

16 - Nov - 1984

In this more I consider a design for a RICH (Bing Inaging Generation Constru) To identify the K' from A" + A"K" TITT' at the trigger Level. I discuss here single Particle Response of the constructed a possible scheme for a K" Tragger within to piece of the event. I have not yet studied Multi-particle perpose in defact, Nen have defailed mechanisal, potical or electronic designs been made.

LH 387

SELEX RICH

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

SELEX RICH particle ID in a 600 GeV/c beam is fun!

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

Selex RICH Radius Resolution

Resolution is pure geometry

- Table gives single PMT resolution
- Ring resolution is σ_R = σ / sqrt(N)
 Resolution function is Gaussian for many orders of magnitude
 Overlaping multiple rings are small

parameter	[mm]
Pixel size	4.03
Mirror alignment	2.06
Tracking resolution	3.0
Dispersion in Neon	1.2
Total predicted	5.54
Measured	5.5 ± 0.1

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

SLD CRID at SLAC

how not to do RICH PID

Alternative design

- TMAE wire chambers to detect UV Cherenkov photons. In this case (and some, but not
- all, others) dozens of people spent a dozen years and a dozen M\$ for very small gains.

KISS

pay for photodetectors that work

This lesson was learned

the DIRC at Babar works well

Performance of the SLD Barrel CRID During the 1992 Physics Data Run*

K. Abe,^a P. Antilogus,^{b,1} D. Aston,^b K. Baird,^c A. Bean,^d R. Ben-David,^e T. Bienz,^{b,2} F. Bird,^{b,3} D. O. Caldwell,^d M. Cavalli-Sforza,^f J. Coller,^g P. Coyle,^{f,4} D. Coyne,^f S. Dasu,^{h,5} S. Dolinsky,^{h,6} A. d'Oliveira,^{b,7} J. Duboscq,^{d,8} W. Dunwoodie,^b G. Hallewell,^{b,4} K. Hasegawa,^a Y. Hasegawa,^a J. Huber,^{d,9} Y. Iwasaki,⁹ P. Jacques,^c R. A. Johnson,^h M. Kalelkar,^c H. Kawahara,^h Y. Kwon,^b D.W.G.S. Leith,^b X. Liu,^f A. Lu,^d S. Manly,^e J. Martinez,^h L. Mathys,^{d,10} S. McHugh,^d B. Meadows,^h G. Möller,^b D. Moller,^b T. Nagamine,^b M. Nusshaum,^b T. J. Pavel,^b R. Plano,^c B. Rateliff,^b P. Rensing,^b A. K. S. Santha,^b D. Schultz,^b J. T. Shank,^g S. Shapiro,^b C. Simopoulos,^{b,14} J. Snyder,^e M.D. Sokoloff,^b E. Solodov,^{b,6} P. Stamer,^c I. Stockdale,^{h,12} F. Suekane,ⁿ N. Toge,^{n,13} J. Turk,^e J. Va'vra,^h .J.S. Whitaker.² D. A. Williams,^f S. H. Williams,^h R. J. Wilson,ⁱ G. Word,^c S. Yellin,^d H. Yuta^u ^aDepartment of Physics, Tohoku University, Aramaki, Sendal 980, JAPAN ^hStanford Linear Accelerator Center, Stanford, CA 94309, USA. ^cSerin Physics Laboratory, Rutgers University, P.O. Box 849, Piscatawav, NJ 08855, USA. ⁴Department of Physics, University of California, Santa Barbara, CA 93106, USA ^eDepartment of Physics, Yale University, New Haven, CT 06511, USA. ¹Santa Cruz Inst. for Particle Physics, University of California, Santa Cruz, CA 95064, USA ²Department of Physics. Boston University, Boston, MA 02215, USA ^bDepartment of Physics, University of Cincinnati, Cincinnati, OH 45221, USA ¹Department of Physics, Colorado State University, Fort Collins, CO 80523, USA.

> No PID performance curves ever shown

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab Overview of RICH Detectors 9

æ

SLAC-PUB 5986 November 1992

Hera-b RICH

if only the experiment had worked as well as the RICH

Multi-anode PMTs - the next step

- clever demagnifing lens optics to match Cherenkov photons onto Hammamatsu multi-anode PMTs
- Detector performance goals largely achieved
- The rest of Hera-B had more than a few problems

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

HERMES dual radiator RICH

Two Cherenkov Radiators: gas and aerogel

- covers a broad momentum range with good separation and efficiency
- This was done with 3/4 PMTs *a-la* Selex
- You'll hear this again later in this session.

Shamelessly stolen from Hal Jackson's RICH2004 proceedings

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

Main Injector Particle Production the SELEX RICH on CO₂

Selex Rich inherited by the MIPP experiment

• The experiment's goal is to measure particle production yields at the Fermilab 125 geV/c Main Injector

- They needed to shift the PID momentum scale by ~125GeV/c / 800GeV/c
- Changed working gas from Neon to CO₂ Higher index, lower threshold
 - Lots more light
 - Somewhat worse dispersion
- Same vessel and pmt array
- A fresh design would be 2-3m long, not 10m

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

PMT RICH Design Criteria

• Radiator

- Index determines velocity threshold
- All else follows from kinematics ($\mathbf{P} = M\gamma\beta$)
- Length and quantum efficiency gives photon yield $N_{pe}(\beta=1)$
- Dispersion effects resolution

• Photon detector

Angular phase space of tracks to be IDed in units of θ_c^2 drive number of pixels, technology and cost. Spectral range couples resolution, N_{pe}, and cost.

- Optics get the Cherenkov light to the photon detector Simple & cheap - or not, depending on the rest of the experiment
- Electronics rates?, timing?, cost? Selex RICH readout as an MWPC plane.

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

Advanced Design Example - CKM Ultra-rare (very high rate) Kaon decays

v3.0 3-jan-04 psc

Beam

Pion RICH 1 atm

- Decay in flight $(K^+ \rightarrow \pi^+ \pi^0, K^+ \rightarrow \pi^+ \nu \nu)$
- Redundant high rate detectors and veto systems.
- RICHes used as high rate vector velocity spectrometers [$\beta\gamma(R)$, θ_x , θ_y ; t]

Separated 50 MHz K+ beam 22 GeV/c.

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

Simulated Spectrometer Performance

- Missing mass resolution for $M^2_{\pi^0}$ from $K^+ \rightarrow \pi^+ \pi^0$
- Matched resolution from momentum and velocity spectrometers
- Low non-Gaussian tails
- Uncorrelated measurements
- Sub nsec time resolution

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

Pion RICH Redesign

P940 Pion RICH Redesign

- 1 Atm Neon
- 20m radiator length
- Up-down split multi segment spherical mirror
- 20m focal length
- R760 PMT Photocathodes (2x~1500 tubes)
- Quartz tubes & windows (180nm) ²

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

Pion RICH simulated performance

Only changes are

- Vacuum beam pipe
- Up-down split mirror
- Split photo-cathode 2% of photons lost to pipe

parameter	CKM / P940 (Ne)
flux [MHz]	~2
Radiation Lengths (x10 ⁻³)	63
Interaction Lengths (x10 ⁻³)	19
Maximum PMT rate [KHz]	~30
Vessel diameter [m]	4.44 (8ft)

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab

Conclusions

RICHes are now mature technology
 The early RICH history is now *history*.
 A mature technology has already produced physics results
 A good, simple, design will work as simply calculated

• Challenges for a CLAS12 RICH Geometry - getting the light out to the photo-detector Large solid angle

• Note

If the radiator can be close enough to the target some charged hyperons will radiate *before* they decay.

Direct hyperon PID. ($\gamma\beta c\tau \sim 18$ cm for a P=5 GeV/c Σ^{-})

CLAS12 Workshop January 28-29, 2008 Peter S. Cooper Fermilab