Overview of CLAS12

Volker Burkert Jefferson Lab

JLab Upgrade to 12 GeV Overview of CLAS12 The Science Program with CLAS12 Schedule Conclusions

Workshop on RICH Detector for CLAS12

JLab Upgrade to 12 GeV

New Capabilities in Halls A, B, & C, and a New Hall D

9 GeV tagged polarized photons and a 4π hermetic detector

B

CLAS12 with new detectors and higher luminosity (10³⁵/cm²s)

C

Super High Momentum Spectrometer (SHMS) at high luminosity and forward angles

High Resolution Spectrometer (HRS) Pair, and specialized large installation experiments

CLAS12

uclear Matter - Qua

PAC32 August 6-8, 2007

U.S. DEPARTMENT OF ENERGY

Single sector (exploded view)

CLAS12 – Central Detector

Forward Detector

Central Detector

Design Parameters	(Base
equipment)	

	Forward	Central
	Detector	Detector
Angular range		
Charged Particles	$5^0 - 40^0$	$40^{0} - 135^{0}$
Photons	$2^{0} - 40^{0}$	N/A
Resolution		
δp/p (%)	< 1 @ 5 GeV/c	< 3 @ 0.5 GeV/c
$\delta\Theta$ (mr)	< 0.5	< 10
δφ (mr)	< 0.5	< 6
Photon detection		
Energy (MeV)	>150	N/A
$\delta\Theta$ (mr)	4 (1GeV)	N/A
Neutron detection		
N _{eff}	0.1 – 0.6	0.05
Particle ID		
e/π	Full range	N/A
π/p	Full range	\leq 1.2 GeV/c
π/K	Full range	\leq 0.65 GeV/c
K/p	< 4 GeV/c	\leq 0.90 GeV/c
$\pi^0 \rightarrow \gamma\gamma$	Full range	N/A
η→γγ	Full range	N/A

CLAS12 in Hall B

Moller polarimeter Photon Energy tagging system Polarized targets Goniometer/polarized photons Pair spectrometer Beam monitors

Kinematics of deeply virtual exclusive processes

Proposed Initial Physics Program in Hall B

GPD's and 3D-Imaging of the Nucleon

- Deeply Virtual Compton Scattering DVCS
- Deeply Virtual π/η Production at low/high t

□ Valence Quark Distributions

- u- and d-Quark Spin Distributions in Proton and Neutron
- Neutron Structure Function F_{2n}(x,Q²), d/u
- TMD Quark Distribution Functions in SIDIS

□ Form Factors and Resonance Excitations

- The Magnetic Structure of the Neutron G_{Mn}
- N* Transition Form Factors at high Q²

□ Hadrons in the Nuclear Medium

- Space-Time Characteristics of Quark Hadronization
- Color Transparency
- Short Distance Dynamics of Light Nuclei

CLAS12 | PAC30 & PAC32 approved proposals

Proposal	Physics	Energy (GeV)	Requested PAC days
E12-06-119a	DVCS pol. beam	11	80
E12-06-112	ер→еπ+′-⁄0 Х	11	60
E12-06-108	DVMP in π ⁰ ,η prod	11	80
	L/T separation	8.8	20
		6.6	20
E12-06-119b	DVCS pol. target	11	120
E12-06- 109	Long. Spin Str.	11	80
E12-07-107	TMD SSA	11	103
E12-06-106	Color Transparency ρ^0	11	40
E12-06-117	Quark Hadronization	11	60
E12-07-104	Neutron mag. FF	11	56
Total			719

The Promise of GPDs: 2-D & 3-D Images of the Proton

Cat scan of the human brain

Use of polarized DVCS to access GPDs

The path towards the extraction of GPDs

Projected precision in extraction of GPD H at x = ξ

Exclusive p^0 production on transverse target

 $2\Delta_{\rm I}({\rm Im}({\rm AB}^*))/\pi$

 $A_{\rm UT} =$

 $|A|^2(1-\xi^2) - |B|^2(\xi^2+t/4m^2) - Re(AB^*)^2\xi^2$

$$\rho^{0} = \frac{\mathbf{A} \sim 2H^{u} + H^{d}}{\mathbf{B} \sim 2E^{u} + E^{d}}$$

$$\rho^+ \qquad \mathbf{A} \sim \mathbf{H}^u - \mathbf{H}^d \\ \mathbf{B} \sim \mathbf{E}^u - \mathbf{E}^d$$

E", E" needed for orbital angular momentum sum.

Valence structure function flavor dependence

Neutron Structure Function $F_{2n}(x,Q^2)$ poorly known at large x resulting in large uncertainties for the ration d/u quarks.

Tagging "free" Neutron Structure Function by measuring spectator proton at low momentum, $p_s > 70 \text{MeV/c}$ in $eD \rightarrow ep_s X$

Valence structure function spin dependence

Proton

W > 2; Q² > 1

Deuteron

Improvements in Δu , Δd , ΔG , Δs

Spin-Flavor Distributions -Important complement to RHIC Spin data

QuickTime™ and a decompressor are needed to see this picture

Neutron Magnetic Form Factor

At 12 GeV extend knowledge of magnetic structure of neutron to much shorter distances. Needed for constraints of GPDs at large t; related to moments of GPDs: $F_1(t) = \int H(t,x,\xi) dx$, $F_2(t) = \int E(t,x,\xi) dx$

Projections for N* Transition Amplitudes @ 12 GeV

Probe the transition from effective degrees of freedom, e.g. constituent quarks, to elementary quarks, with characteristic Q² dependence.

Color transparency in ρ electroproduction

- Color Transparency is a spectacular prediction of QCD: under the right conditions, nuclear matter will allow the transmission of hadrons with reduced attenuation
- Totally unexpected in an hadronic picture of strongly interacting matter, but straightforward in quark gluon basis
- Why ρ ? CT should be evident first in mesons

 The signature of CT is the rising of the nuclear transparency TA with increasing hardness of the reaction (Q)

ρ

Electromagnetic ISI Hadronic ISI Hadronic ISI $\lambda_c = \frac{2\nu}{(M_V^2 + Q^2)}$ Small ℓ_c

Measurement at fixed coherence length needed for unambiguous interpretation

Color transparency in p electroproduction

High-precision measurements will permit systematic studies

Summary

- The CLAS12 Detector has physics goals of fundamental importance for the future of hadron physics, addressing in new and revolutionary ways the quark and gluon structure of mesons, nucleons, and nuclei by
 - accessing generalized parton distributions and the 3D imaging of the nucleon
 - exploring the valence quark structure of nucleons at extreme quark momentum
 - understanding quark confinement and hadronization processes
 - extending nucleon elastic and resonance transition form factors to short distances
- The NSAC Long Range Plan has the 12 GeV upgrade as the highest priority nuclear science project, and highlights major parts of the physics program with CLAS12

2007 NSAC Long Range Plan (4 recommendations)

Recommendation 1

We recommend the completion of the 12 GeV Upgrade at Jefferson Lab.

- It will enable three-dimensional imaging of the nucleon, revealing hidden aspects of its internal dynamics.
- It will complete our understanding of the transition between the hadronic and quark/gluon descriptions of nuclei.
- It will test definitively the existence of exotic hadrons, longpredicted by QCD as arising from quark confinement.
- It will provide low-energy probes of physics beyond the Standard Model complementing anticipated measurements at the highest accessible energy scales.

HALL B WBS 1.1.3, 1.2.2.2 & 1.4.2

12 GeV Upgrade FY 08-15 Hall B Level 4

Thomas Jefferson National Accelerator Facility

