SPACE-TIME PROPERTIES OF HADRONIZATION: WHAT PHYSICS CAN BE GAINED FROM A CLAS I 2 RICH?

Will Brooks Santa Maria University Valparaiso, Chile

CONTEXT

2

EXPERIMENTS

- New experiments to study hadronization and quark energy loss (now, +/- 10 years):
 - HERMES, CLAS, CLASI2
- Close connections to topics from other communities:
 - Fermlab (Drell-Yan), RHIC/LHC (jet quenching)
- Early stage of understanding:
 - comprehensive experimental survey is critical

HERMES, CLAS, CLASI2

The second s

- HERMES took data 1997-2005, 7 nuclear targets, most of data with RICH.
 - 231 pb⁻¹ on He+Ne+Kr+Xe at 27 GeV
- CLAS took data 2003, 4 primary nuclear targets
 - ~25,000 pb⁻¹ on C+Fe+Pb, at 5.0 GeV
- CLASI2: approved experiment, ~10x CLAS luminosity

PHYSICS FOCUS EXPERIMENTAL METHOD

REMINDER: PHYSICS FOCUS

a she was the same as a second water and a state of a same same and the same same and the same as a second south

Determine hadronization mechanisms and time constants:

- Production time, τ_p
- Formation time, ${}^{h}\tau_{f}$

PHYSICAL PICTURE

6

 au_h

and the stand states and the set of the set

Production time τ_p is time required to form color singlet pre-hadron; 'lifetime of deconfined quark'

 $^{h}\tau_{f}$

 formation time ^hτ_f is time required to form full-sized hadron

INTERACTIONS IN NUCLEUS

- 'Gentle' interactions: medium-stimulated gluon emission; results in:
 - small energy loss of propagating quark
 - slightly broadened transverse momentum distribution - small but measurable
 - 'Violent' inelastic reaction prehadron or hadron interacts with medium:
 - results in attenuation of hadron flux

REMINDER: EXPERIMENTAL TECHNIQUE

$$R_{M}^{h}(z,\nu,p_{T}^{2},Q^{2},\phi) = \frac{\left\{\frac{N_{h}^{DIS}(z,\nu,p_{T}^{2},Q^{2},\phi)}{N_{e}^{DIS}(\nu,Q^{2})}\right\}_{A}}{\left\{\frac{N_{h}^{DIS}(z,\nu,p_{T}^{2},Q^{2},\phi)}{N_{e}^{DIS}(\nu,Q^{2})}\right\}_{D}}$$

Hadronic multiplicity ratio

CLASI2 EXPERIMENT

	hadron	$c\tau$	$_{\rm (GeV)}^{\rm mass}$	flavor content	detection channel	Production rate per 1k DIS events	
	π^0	25 nm	0.13	$u \bar{u} d \bar{d}$	$\gamma\gamma$	1100	
a.	π^+	$7.8 \mathrm{~m}$	0.14	$u ar{d}$	direct	1000	
	π^{-}	$7.8 \mathrm{~m}$	0.14	$d\bar{u}$	direct	1000	
- det	η	$0.17 \ \mathrm{nm}$	0.55	$u\bar{u}d\bar{d}s\bar{s}$	$\gamma\gamma$	120	e e
	ω	23 fm	0.78	$u\bar{u}d\bar{d}s\bar{s}$	$\pi^+\pi^-\pi^0$	170	
and the	η'	$0.98~\mathrm{pm}$	0.96	$u\bar{u}d\bar{d}s\bar{s}$	$\pi^+\pi^-\eta$	27	มี
aller a	ϕ	$44~{ m fm}$	1.0	$u\bar{u}d\bar{d}s\bar{s}$	K^+K^-	0.8	
	f1	$8~{ m fm}$	1.3	$u\bar{u}d\bar{d}s\bar{s}$	$\pi\pi\pi\pi$	-	
Contraction of the local division of the loc	K^+	$3.7 \mathrm{~m}$	0.49	$u\overline{s}$	direct	75	
-	K^{-}	$3.7 \mathrm{~m}$	0.49	$\bar{u}s$	direct	25	
	K^0	$27 \mathrm{~mm}$	0.50	$d\overline{s}$	$\pi^+\pi^-$	42	S
	p	stable	0.94	ud	direct	530	
	\bar{p}	stable	0.94	$ar{u}ar{d}$	direct	3	
	Λ	79 mm	1.1	uds	$p\pi^{-}$	72	
	$\Lambda(1520)$	$13 \mathrm{fm}$	1.5	uds	$p\pi^{-}$	-	
	Σ^+	24 mm	1.2	us	$p\pi^{0}$	6	
	Σ^{0}	22 pm	1.2	uds	$\Lambda\gamma$	11	
	Ξ^{0}	$87 \mathrm{~mm}$	1.3	us	$\Lambda\pi^0$	0.6	
-	Ξ-	$49 \mathrm{~mm}$	1.3	ds	$\Lambda\pi^{-}$	0.9	M

Examples of Experimental Data and Theoretical Predictions

v=3-9 GeV. O²=2-8 GeV²

Ζ

CLASI2 Multiplicity Ratio vs. Z_h , π^+

Examples of multi-variable slices of preliminary CLAS 5 GeV data

IMPACTS OF RICH

 $(M_{\rm eff})$

MAJOR IMPACTS OF RICH

- Continuity with HERMES: π^{+-0} , K⁺⁻, baryons
- Compare isospin partners over full multi-dimensional space available with CLASI2
- Test universality of production time τ_p
- Double the constraints on mass/size dependence of ${}^{h}\tau_{f}$
- Probe reaction mechanism using known cross sections

CONTINUITY WITH HERMES

The second se

- HERMES has measured attenuation of identified hadrons with a range of nuclear target masses:
 - Eur. Phys. J. C 20, 479–486 (2001); Phys. Letts. B 577(2003)37; Nucl. Phys. B 780 (2007)1
 - π^{+-0} , K⁺⁻, proton, antiproton
 - Targets: D, He, (N), Ne, Kr, Xe

HERMES data for He, Ne, Kr, Xe: π^{+-} , K⁺⁻, p, antiproton

CONTINUITY WITH HERMES

and and the stand of the second stand and the second second

Important to have continuity because:

- Exploratory surveys: avoid extrapolations and modeling in making basic cross-checks of the data
- Need to demonstrate consistency with the HERMES I-D and 2-D analyses before drawing conclusions from 5-D analyses
- Extrapolation of higher-level analyses (e.g., for τ_p and ${}^{h}\tau_f$) to higher v where only HERMES has coverage

COMPARE ISOSPIN PARTNERS OVER FULL 5-D SPACE

- CLASI2 allows studies in 5-dimensional bins; this is critical for 2nd generation study.
- Naive picture: isospin partners should have nearly identical formation properties. Crucial cross-check on validity of physical picture. Consistent with HERMES pion observations for I-D distributions.
- Can also assess impact of alternate initial state mechanisms (e.g., K⁻ vs. K⁺).

TEST UNIVERSALITY OF PRODUCTION TIME

- If physical picture of struck quark propagating is correct, then p_T broadening should naively be identical for π⁺⁻⁰, K⁺⁰. (K⁻ should be different.) (Baryons?)
- Need to test over wide kinematic range.
- Without RICH, lose important mesons & kinematics

Constraints on mass/size dependence of ${}^{h}\tau_{f}$

 Naive picture: larger hadrons take longer to form than smaller hadrons, and baryons (3q) take longer to form than mesons (2q).

and the second products and back to be the second state and

- Based on arguments from Fourier components and from formation mechanisms.
- Need the broadest possible kinematic range for the largest range of hadron masses/sizes

Probe Reaction Mechanism with Known Cross Sections

- Compare π⁺ to K⁺: total cross section on D is different by factor 2.
- Can discriminate between hadronization inside nucleus and hadronization outside the nucleus?
- Shed light on the most basic controversy over reaction mechanism.