#### Strange Sea Contribution to the Nucleon Spin



#### Fatiha Benmokhtar

Carnegie Mellon University, USA

with

A. El Alaoui, (LPC Grenoble, France), H. Avakian (Jlab,USA), K. Hafidi (ANL, USA)

#### Strange Sea Contribution to the Nucleon Spin

## Outline

- Strange quark contributions to the nucleon properties (in general).
- Strange quark contribution to the nucleon spin.
- World data on  $\Delta S$
- Semi Inclusive DIS: Five flavor tagging
   Isosclar Method
- DeltaS with CLAS12?



## Nucleon constituents

 $P = uud + u\overline{u} + d\overline{d} + s\overline{s} + g + ....$ valence « sea= virtual pairs »



- The sea contains all flavors, but
  - the u and d sea can't be distinguished from the valence
  - the heavier quarks (c,b,t) are too heavy to contribute much
  - Strange quark is the natural candidate to study the sea.

With how much do virtual pairs contribute to the structure of the nucleon ? Mass? Momentum? Charge & Magnetisation and Spin? F. Benmokhtar, RICH workshop

## Strange Quark Contribution to the Nucleon Properties

• Mass: Hyp -> 
$$=\langle |-| \rangle$$
 130 MeV  $\Rightarrow$  0 to 30 % with big theoretical uncertainties.

Longitudinal Momentum: -Study the spectral functions q(x),
 -From unpol DI ν<sub>μ</sub>-Nucleon scattering (NuTeV)

. For x < 0.1 
$$\int_0^1 x (s(x) + \bar{s}(x)) dx \sim 4\% \rightarrow \text{Difficult to connect with ordinary observable}$$

• Electromagnetic Form Factors: Parity violation experiments: G0, HAPPEX, PVA4.

$$G_{E,M}^{s} = \left(1 - 4\sin^{2}\theta_{W}\right)G_{E,M}^{\gamma,p} - G_{E,M}^{\gamma,n} - G_{E,M}^{Z,p} \quad \rightarrow \text{Underway} \otimes$$

## What about the contribution to the Nucleon Spin?

$$\left\langle N/\bar{s}\gamma^{\mu}\gamma^{5}s/N\right\rangle = ???$$

# Strangeness Contribution to the Nucleon Spin

$$S = \frac{1}{2}\Sigma, \ \Sigma = +$$
  
 $= \frac{4}{3} \quad d = \frac{1}{3}$ 



#### BUT In 1989 EMC measured

 $\Sigma = 0.120 \pm 0.094 \mp 0.138 \rightarrow -20 \%$  of the nucleon spin!!!

#### 

# Strangeness Contribution to the Nucleon Spin





-> Gluon spin  $\Delta G$ 

- -> Sea quark spin  $\Delta q$
- -> Orbital Angular Momentum  $L_G$  and  $L_q$

Lattice Calculations predict:

$$\Delta s = -0.1$$

### World Data on $\Delta S$

 Polarized deep-inelastic inclusive scattering (SMC)

$$\Delta u + \Delta d + \Delta s = 0.20 \pm 0.10$$
$$\Delta s = -0.1 \pm 0.1$$

• 
$$V-p$$
 elastic scattering (E734 BNL)

$$\Delta s = -0.15 \pm 0.09$$



So far, the results vary widely and the uncertainties are big

$$\left\langle N / \overline{s} \gamma^{\mu} \gamma^{5} s / N \right\rangle = ???$$

## Semi Inclusive DIS



 $\sigma(ep \rightarrow ehX)$ 

Sidis Selection:

- $\succ x = Q^2 / (2M v)$

$$\succ$$
 y =  $v/E$ 

 $\gg$   $W^2 = M^2 - 2M v - Q^2$ 

$$\triangleright$$
 Q<sup>2</sup> = 4EE'sin<sup>2</sup>( $\theta$ /2)

$$\frac{d^{2}\sigma}{d\Omega dE'} = \frac{\alpha^{2}}{MQ^{4}} \frac{E}{E'} L_{\mu\nu} W^{\mu\nu}$$

#### Hadron Selection:

$$z = E_h / v$$
  
$$x_F = 2 |p_{||} / W$$

## **Spin Asymmetries**



A Select  $q^{-}(x)$  or  $q^{+}(x)$  by changing the orientation of target nucleon spin or helicity of incident lepton beam

Spin Independent Structure Function  $F_1$  $\sigma_{1/2} + \sigma_{3/2} \propto F_1(x) = \frac{1}{2} \sum_f e^2 (q^+(x) + q^-(x))$  Spin Dependent Structure Function  $g_1$ 

$$\sigma_{1/2} - \sigma_{3/2} \propto g_1(x) = \frac{1}{2} \sum_f e^2 \left( q^+(x) - q^-(x) \right)$$

### Measurement of $\Delta q$ in Semi-Inclusive DIS

$$A_{1}^{e(h)}(x,Q^{2}) = \frac{\sigma_{1/2}^{e(h)} - \sigma_{3/2}^{e(h)}}{\sigma_{1/2}^{e(h)} + \sigma_{3/2}^{e(h)}} = \frac{1}{(1 + \eta\gamma)D} \frac{1}{\langle P_{B}P_{T} \rangle} \frac{(N^{e(h)}/L)^{\frac{1}{\varphi}} - (N^{e(h)}/L)^{\frac{1}{\varphi}}}{(N^{e(h)}/L)^{\frac{1}{\varphi}} + (N^{e(h)}/L)^{\frac{1}{\varphi}}}$$

$$\sim \sum_{q} \frac{e_{q}^{2}q(x)\int dz D_{k}^{h}(z)}{\sum_{q'}e_{q'}^{2}q'(x)\int dz D_{q'}^{h}(z)} \frac{\Delta q(x)}{q(x)}$$

$$P_{q}^{h}(x,z)$$
-  $P_{q}^{h}$  Purity is a conditional probability that a hadron of type *h* observed in the final state is originated from a struck quark of flavor q in case of unpolarized beam/target.

F. Benmokhtar, RICH workshop

•

 $A_1 \equiv P$ 

### $\Delta S$ from SIDIS

$$\begin{array}{c} P \\ A_1 = P \\ \bullet \end{array} \begin{array}{c} Q \\ Q \end{array}$$

#### 1- Five flavor decomposition ( $\Delta q$ )

#### 2-Isoscalar extraction of $\Delta S$

## Five flavor decomposition (Δq with SIDIS)

 $\begin{array}{l}
\rho \\
A_{1,p} \\
A_{1,p} \\
A_{1,p} \\
A_{1,p} \\
A_{1,q} \\
\vdots \\
\vdots \\
A_{1,d} \\
A_{1,d} \\
\vdots \\
A_{1,d} \\
A_$ 

-HERMES: Purities calculated from MC simulation of the entire scattering process.

 $\Delta u = 0.601 \pm 0.039 \pm 0.049 \qquad \Delta u = -0.002 \pm 0.036 \pm 0.029$  $\Delta d = -0.226 \pm 0.039 \pm 0.050 \qquad \Delta d = -0.054 \pm 0.033 \pm 0.011$ 



#### Phys.Rev.D71(2005)012003



## Isoscalar extraction of $\Delta S$

$$K^+ = u\bar{s}$$
  $K^- = \bar{u}s$ 

#### Need a longitudinally polarized deuterium target

- strange quark in proton and neutron identical
- fragmentation simplifies

#### Assumptions:

- isospin symmetry between proton and neutron
- charge-conjugation invariance in fragmentation

#### Extraction from data of:

- inclusive  $A_{1d}(x,Q^2)$  and kaon  $A_{1d}^{K}(x,Q^2)$  double spin asymmetries
- kaon multiplicities

## Isoscalar extraction of $\Delta S$ :

$$\begin{pmatrix} A_d(x) \\ A_d^K(x) \end{pmatrix} = \begin{pmatrix} P_Q(x) & P_S(x) \\ P_Q^K(x) & P_S^K(x) \end{pmatrix} \begin{pmatrix} \Delta Q(x)/Q(x) \\ \Delta S(x)/S(x) \end{pmatrix}$$

- Measure inclusive asymmetry  $A_{1,d}$  and kaon asymmetries  $A_{1(K^{+}+K^{-})}$
- ★ Extract isoscalar combinations of  $\Delta Q(x)$  and  $\Delta S(x)$   $\Delta S(x) \equiv \Delta s(x) + \Delta \overline{s}(x)$   $\Delta Q(x) \equiv \Delta u(x) + \Delta \overline{u}(x) + \Delta d(x) + \Delta \overline{d}(x)$ ★ Inclusive purities from PDFs (CTEQ6, MRST, GRV...)  $P_{\varrho}(x) = \frac{5Q(x)}{5Q(x) + 2S(x)}, P_{s}(x) = \frac{2S(x)}{5Q(x) + 2S(x)}$ 
  - Kaon purities can be computed from the kaon multiplicities and the pdfs: How?  $\rightarrow$

# **Kaon Multiplicities**

$$P_Q^K(x) = \frac{Q(x)\mathcal{D}_{\text{non strange}}^K}{Q(x)\mathcal{D}_{\text{non strange}}^K + 2S(x)\mathcal{D}_{\text{strange}}^K}$$

$$P_S^K(x) = \frac{S(x)\mathcal{D}_{\text{strange}}^K}{Q(x)\mathcal{D}_{\text{non strange}}^K + 2S(x)\mathcal{D}_{\text{strange}}^K}$$
Using charge symmetry
$$D_q^{K^+ K^-}(z) = D_{\overline{q}}^{K^+ K^-}(z)$$

$$\frac{dN^K(x)/dx}{dN^{DIS}(x)/dx} = \frac{Q(x)\mathcal{D}_{\text{non strange}}^K + 2S(x)\mathcal{D}_{\text{strange}}^K}{5Q(x) + 2S(x)}$$
Fit parameters
Measure
Multiplicities
E. Benmokhtar, RICH workshop
$$f(x) = \frac{Q(x)\mathcal{D}_{\text{strange}}^K + 2S(x)\mathcal{D}_{\text{strange}}^K}{Q(x) + 2S(x)}$$

### HERMES Preliminary results (isoscalar)



Fig. 1. Multiplicity in  $4\pi$  of charged kaons in semi-inclusive DIS on a deuterium target as a function of Bjorken x. The statistical error bars are not visible, and the bands at the bottom represent the systematic uncertainties.



**Fig. 2.** Strange and non-strange quark helicity distributions at  $\langle Q^2 \rangle = 2.5 \,\text{GeV}^2$  as a function of Bjorken x. The error bars are statistical, and the bands at the bottom represent the systematic uncertainties.

H. E.Jackson proceedings in EPJ 2006

# What can we do with CLAS12?

# CLAS12 @ 11GeV



Wide detector and physics acceptance (current/target fragmentation) High beam polarization 85% High target polarization 85% NH<sub>3</sub>,ND<sub>3</sub> targets

#### **Track resolutions:**

| δp (GeV/c)       |   | $0.003p + 0.001p^2$ |
|------------------|---|---------------------|
| δθ (mr)          | < | 1                   |
| δ <b>φ (mr</b> ) | < | 3                   |

Lumi > 10<sup>35</sup>cm<sup>-1</sup>s<sup>-1</sup>

### **CLAS12 Kaon Distributions**



#### **CLAS12 kaon SIDIS Simulations**





F. Benmokhtar, RICH workshop

### CLAS12 points



- Overlap with Hermes
- What can one do with the data at x>0.1?

# -Does it worth it to go ahead with a proposal? ③

# Support slides....

# Beam time???

clasdisde.p1.e11.000.emn0.75tmn.12.xs57.78nb.dis92.dat

Data analyzed with 200 runs pol+, 200 runs pol-& 450 runs unpol...> for what?

57.78nb per .dat ,Number of events: 57780 per dat.We have 400.dat polarized file in this simulation. --> 23.112.000 total events.

Lumi > 10<sup>35</sup>cm<sup>-1</sup>s<sup>-1</sup>

# Neutrino-p technique

#### .v-p elastic scattering (E734 BNL)

.Cross section contains a form factor  $\,G_1^s\,$ 

$$G_1^s(Q^2 - > 0) = \varDelta s$$

$$\Delta s = -0.15 \pm 0.09$$

# Parity Violation and DeltaS

- Neutral weak probes have sensitivity to Ds
- Ds contributes to parity violation electron scattering, however its sensitivity is suppressed due to the smallness of electron weak charge (at least at forward angles)
- The contribution of Ds is not suppressed in elastic neutrino-nucleon scattering. It can be determined by fitting the cross section with nucleon EM form factors inputs. → small and negative! Strange axial form factor behaves as

GAe at Q2->0

## CLAS12: Kinematical coverage



| Large Q <sup>2</sup> accessible with CLAS12 are important for separation of HT | <ul> <li>➢ DIS kine</li> <li>Q<sup>2</sup>&gt;1 Ge</li> <li>➢ 0.4&gt;z&gt;0.</li> </ul> | matics,<br>V², W²>4 GeV², y<0.85<br>7, M <sub>x</sub> ²>2 GeV² |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|
| contributionsneed to change this.                                              |                                                                                         | 28                                                             |

# Strangeness Contribution to the Nucleon Longitudinal Momentum



# Strangeness Contribution to the Nucleon Mass

Mass of the Nucleon: 
$$M_N = \langle N | H_{QCD} | N \rangle$$
  
Quark mass term  $H_{QCD} = \sum_i m_i \overline{q_i} q_i$   
Chiral limit:  $M_N = M_0 \neq 0$  -> gluon and  $q \overline{q}$  condensate.  
Turn on the quark masses:  $M_N = M_0 + \sigma_s + heavy quark term$ 

 $\sigma$  and  $\sigma_s$  : scaler FF. =  $f(Q^2)$ 

$$\hat{\sigma} = m \langle N | \overline{u}u + \overline{d}d | N \rangle, \sigma_s = ms \langle N | \overline{s}s | N \rangle \qquad m = \frac{1}{2} (m_u + m_d)$$

F. Benmokhtar, RICH workshop

## -First constraint:

Hyperon mass splitting due the SU(3) flavor symmetry breaking effect.

$$\frac{1}{3}(1-\frac{m_s}{m})(1-y)\hat{\sigma} = M_{\Lambda} - M_{\Xi}$$



strange content of the nucleon

- canonical ratio:  $m_s/m \approx 26$  assume y =0 Higher order chiral corrections

# -Second constraint:

$$\pi - N$$
 sigma term  $\sum_{\pi N} = F_{\pi}^2 \overline{D}^+ (s = M_N^2, t = 2m_{\pi}^2)$ 

F. Benmokhtar, RICH wor  $\hat{\sigma} = 45 MeV$ 

 $\hat{\sigma} = 35 \text{ MeV}$ 

Which is related to the isospin even  $\pi - N$  scattering amplitude . s= invariant mass of the  $\pi - N$  system t= four-momentum transfer Lowest order PQCD low energy theorem states:  $\sum_{\pi N} \hat{\sigma}(t = 2m_{\pi}^2)$ 

(t=0) Extrapolation

# Strangeness Contribution to the Nucleon Mass

Hyp -> 
$$\hat{\sigma} = 35 MeV$$
  
 $\pi$ -N ->  $\hat{\sigma} = 45 MeV$ 

$$y = 2\%$$

$$= \langle |-| \rangle 130 MeV$$

Sea quark contribute to a sizable amount to the nucleon mass! However: uncertainty quiet large due to many theoretical or experimental factors.

. Other lattice calculation lead to:  $\sigma \sim 53 \ MeV$  and y = 0.36

. Analysis based on dispersion sum rules: sigma ~ 70+-9 MeV. Etc..

Conclusion Mass : 0 to 30 % with big uncertainties...

#### Strange Electromagnetic Form Factors



Define vector (EM) form factors:  $\left\langle N \left| J_{EM}^{\mu} \right| N \right\rangle \Longrightarrow G_{E,M}^{\gamma}$ 

Distribution of nucleon's charge and magnetization.

$$G_{E,M}^{\gamma} = \frac{2}{3} G_{E,M}^{u} - \frac{1}{3} G_{E,M}^{d} - \frac{1}{3} G_{E,M}^{s} - \frac{1}{3} G_{E,M}^{s} - \frac{1}{3} J_{EM}^{\mu} = \sum e_{q} \overline{q} \gamma^{\mu} q$$

• . Charge symmetry

$$G^{u,p} = G^{d,n}; G^{d,p} = G^{u,n}; G^{s,p} = G^{s,n}$$

$$G_{E,M}^{\gamma,p} = \frac{2}{3}G_{E,M}^{u} - \frac{1}{3}G_{E,M}^{d} - \frac{1}{3}G_{E,M}^{s}$$

$$Reed one more constraint ...$$

$$G_{E,M}^{\gamma,n} = \frac{2}{3}G_{E,M}^{d} - \frac{1}{3}G_{E,M}^{u} - \frac{1}{3}G_{E,M}^{s}$$

$$Reed one more constraint ...$$

$$H workshop$$

#### Neutralweak Form Factors — Additional Constraint



$$\left\langle N \left| J_{NC}^{\mu,V} \right| N \right\rangle \Rightarrow G_{E,M}^{Z}$$

Flavor decomposition of proton neutral weak form factor:

$$G_{E,M}^{Z,p} = \left(1 - \frac{8}{3}\sin^2\theta_W\right)G_{E,M}^u + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_{E,M}^d + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_{E,M}^d$$

Quark weak charges in the unified electroweak theory in SM

 $sin^2\theta_W = 0.2312 \pm 0.00015$ 

$$= (1 - 4\sin^2\theta_W) G_{E,M}^{\gamma,p} - G_{E,M}^{\gamma,n} - G_{E,M}^{Z,p}$$

#### **Parity Violation Asymmetry**



Interference:  $\sigma \sim |M^{EM}|^2 + |M^{NC}|^2 + 2Re(M^{EM^*})M^{NC}$ ,  $\frac{M_{\gamma}}{M_{\gamma}} \approx 10^5$ 

- Scatter polarized electrons off unpolarized target
- Tiny (~10<sup>-6</sup>) cross section asymmetry isolates weak interaction

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{\left| M_{PV} \right|^{NC}}{\left| M_{EM} \right|} \sim \frac{Q^2}{\left( M_Z \right)^2}$$
$$A_{PV} = \left[ \frac{-G_F Q^2}{4\pi\pi\sqrt{2}} \right] \frac{A_E + A_M + A_A}{\sigma_p}$$
F. Benmokhtar RICH workshop  
Electric Magnetic Axial