From Chiral EFT Interactions to Nuclear Structure and Reactions

Robert Roth

TECHNISCHE UNIVERSITÄT DARMSTADT

Ab Initio Nuclear Structure

Low-Energy Quantum Chromodynamics

Ab Initio Nuclear Structure

Nuclear Structure Observables

Low-Energy Quantum Chromodynamics

Robert Roth – TU Darmstadt – 08/2012

Nuclear Interactions from Chiral EFT

Nuclear Interactions from Chiral EFT

- chiral EFT perspective: cf. previous talk by Hermann Krebs
- ab initio nuclear structure theory is the users community for chiral EFT Hamiltonians
- present 'standard' Hamiltonian:
 - NN at N³LO: Entem & Machleidt, 500 MeV cutoff
 - 3N at N²LO: Navrátil, A=3 fit, 500 MeV cutoff
- ready for next generation
 - consistent chiral NN+3N Hamiltonians at N³LO
 - Δ-full chiral EFT, YN interaction,...

Similarity Renormalization Group

Roth, Langhammer, Calci et al. — Phys. Rev. Lett. 107, 072501 (2011) Roth, Neff, Feldmeier — Prog. Part. Nucl. Phys. 65, 50 (2010) Roth, Reinhardt, Hergert — Phys. Rev. C 77, 064033 (2008) Hergert, Roth — Phys. Rev. C 75, 051001(R) (2007)

Similarity Renormalization Group

$$\eta_{\alpha} = (2\mu)^2 [T_{int}, \widetilde{H}_{\alpha}]$$

SRG Evolution in Three-Body Space

Robert Roth – TU Darmstadt – 08/2012

SRG Evolution in Three-Body Space

Calculations in A-Body Space

• evolution induces *n*-body contributions $\widetilde{H}_{\alpha}^{[n]}$ to Hamiltonian

$$\widetilde{\mathsf{H}}_{\alpha} = \widetilde{\mathsf{H}}_{\alpha}^{[1]} + \widetilde{\mathsf{H}}_{\alpha}^{[2]} + \widetilde{\mathsf{H}}_{\alpha}^{[3]} + \widetilde{\mathsf{H}}_{\alpha}^{[4]} + \dots$$

• truncation of cluster series inevitable — formally destroys unitarity and invariance of energy eigenvalues (independence of α)

Three SRG-Evolved Hamiltonians

- NN only: start with NN initial Hamiltonian and keep two-body terms only
- **NN+3N-induced**: start with NN initial Hamiltonian been twoand induced three-body terms α -variation provides a
- NN+3N-full: start with NN+3 and all three-body terms

 α-variation provides a
 diagnostic tool to assess
 the contributions of omitted many-body interactions

Importance Truncated No-Core Shell Model

Roth, Langhammer, Calci et al. — Phys. Rev. Lett. 107, 072501 (2011) Navrátil, Roth, Quaglioni — Phys. Rev. C 82, 034609 (2010) Roth — Phys. Rev. C 79, 064324 (2009) Roth, Gour & Piecuch — Phys. Lett. B 679, 334 (2009) Roth, Gour & Piecuch — Phys. Rev. C 79, 054325 (2009) Roth, Navrátil — Phys. Rev. Lett. 99, 092501 (2007)

Importance Truncated NCSM

NCSM is one of the most powerful and universal exact ab-initio methods

- construct matrix representation of Hamiltonian using a **basis of HO** Slater determinants truncated w.r.t. HO excitation energy $N_{max}\hbar\Omega$
- solve **large-scale eigenvalue problem** for a few extremal eigenvalues
- all relevant observables can be computed from the eigenstates
- range of applicability limited by **factorial growth** of basis with $N_{max} \& A$
- adaptive importance truncation extends the range of NCSM by reducing the model space to physically relevant states
- we have developed a **parallelized IT-NCSM/NCSM code** capable of handling 3N matrix elements up to $E_{3 max} = 16$

Importance Truncated NCSM

- converged NCSM calculations essentially restricted to lower/mid p-shell
- full 10ħΩ calculation for ¹⁶O getting very difficult (basis dimension > 10¹⁰)

Importance Truncation

reduce model space to the relevant basis states using an **a priori importance measure** derived from MBPT

⁴He: Ground-State Energies

⁶Li: Ground-State Energies

¹²C: Ground-State Energies

¹⁶O: Ground-State Energies

¹⁶O: Ground-State Energies

Spectroscopy of ¹²C

Spectroscopy of ¹²C

Outlook: Carbon Isotopic Chain

Outlook: Carbon Isotopic Chain

Sensitivity of Nuclear Spectra on Chiral 3N Interactions

Sensitivity on Chiral 3N Interactions

- analyze the sensitivity of spectra on **low-energy constants** (c_i, c_D, c_E) and **cutoff** (Λ) of the chiral 3N interaction at N²LO
- why this is interesting:
 - **impact of N³LO contributions**: some N³LO diagrams can be absorbed into the N²LO structure by shifting the c_i constants

$$\bar{c}_1 = c_1 - \frac{g_A^2 M_\pi}{64\pi F_\pi^2}, \quad \bar{c}_3 = c_3 + \frac{g_A^4 M_\pi}{16\pi F_\pi^2}, \quad \bar{c}_4 = c_4 - \frac{g_A^4 M_\pi}{16\pi F_\pi^2}$$

• **uncertainty propagation**: sizable variation of the ci from different extractions

$$c_1 = -1.23... - 0.76$$
, $c_3 = -5.'$

• cutoff dependence: does tion affect nuclear structure obs

provide **constraints** for the development of chiral Hamiltonians and **quantify theoretical uncertainties**

Sensitivity of Spectra on 3N Interactions

■ analyze the sensitivity of spectra on **low-energy constants** (c_i, c_D, c_E) and **cutoff** (Λ) of the chiral 3N interaction at N²LO

	C1 [GeV ⁻¹]	C ₃ [GeV ⁻¹]	C 4 [GeV ⁻¹]	CD	C _E
standard 3N	-0.81	-3.2	+5.4	-0.2	-0.205
c_i shifted	-0.94	-2.3	+4.5	-0.2	-0.085
c_1 shifted	-0.94	-3.2	+5.4	-0.2	-0.247
c_3 shifted	-0.81	-2.3	+5.4	-0.2	-0.200
c_4 shifted	-0.81	-3.2	+4.5	-0.2	-0.130
$c_D = -1$	-0.81	-3.2	+5.4	-1.0	-0.386
$c_{D} = +1$	-0.81	-3.2	+5.4	+1.0	-0.038
$\Lambda = 400 \text{ MeV}$	-0.81	-3.2	+5.4	-0.2	+0.098
$\Lambda = 450 \text{ MeV}$	-0.81	-3.2	+5.4	-0.2	-0.016

• refit c_E parameter to reproduce ⁴He ground-state energy

¹²C : Sensitivity on c_i

12 C : Sensitivity on c_i

12 C : Sensitivity on c_i

¹²C : Sensitivity on C_i

- many states are rather c_iinsensitive
- first 1⁺ state shows strong *c*₃-sensitivity

¹⁰B : Sensitivity on c_i

- dramatic c₃ sensitivity of
 first 1⁺ state
- opposite energy shift compared to 1⁺ in ¹²C
- second 1⁺ very stable

 $\hbar\Omega = 16 \text{ MeV}$ $N_{\text{max}} = 8$ $\alpha = 0.08 \text{ fm}^4$

¹²C : Sensitivity on c_D & Cutoff

dence on c_D , stronger dependence on Λ

■ again first 1⁺ state is most sensitive

¹⁰B : Sensitivity on c_D & Cutoff

- weak dependence on c_D , stronger dependence on Λ
- again first 1⁺ state is most sensitive

Robert Roth - TU Darmstadt - 08/2012

Sensitivity & Correlation Analysis

- mid-p-shell nuclei provide
 powerful test-bed for chiral
 3N interactions
- individual states exhibit a strong sensitivity on the details of the 3N interaction
- 3N at N²LO is not able to describe first 1⁺ states in ¹⁰B/¹²C simultaneously
- new operator structures are needed...

Ab Initio Calculations for Heavy Nuclei

Roth, Binder, Vobig et al. — Phys. Rev. Lett. 109, 052501 (2012)

Heavy Nuclei with 3N Interactions

'ab initio' calculations for heavier nuclei require alternative many-body tools and approximate treatment of 3N interactions

coupled-cluster method for ground states of closed-shell nuclei

 exponential ansatz for many-body states using singles and doubles excitations (CCSD)

normal-ordering approximation of the 3N interaction truncated at the two-body level

- summation over reference state converts part of 3N interaction to zero-, one- and two-body terms
- both approximations are controlled and systematically improvable

¹⁶O: Coupled-Cluster with 3N_{NO2B}

²⁴O: Coupled-Cluster with 3N_{NO2B}

⁴⁰Ca: Coupled-Cluster with $3N_{NO2B}$

⁴⁸Ca: Coupled-Cluster with 3N_{NO2B}

Outlook: Chiral 3N for Heavy Nuclei

- first ab initio calculations with chiral NN+3N Hamiltonians for heavy nuclei
- realistic mass systematics without phenomenological adjustments — α-dependence might hold surprises...

Bridge to Ab Initio Reaction Theory

Hupin, Langhammer et al. — in preparation
Navrátil, Roth, Quaglioni — Phys. Lett. B 704, 379 (2011)
Navrátil, Roth, Quaglioni — Phys. Rev. C 82, 034609 (2010)

Bridge to Ab-Initio Reaction Theory

NCSM/RGM: combine Resonating Group Method for description of relative projective-target motion with IT-NCSM for the description of target nucleus

- astrophysical S-factor for proton capture on ⁷Be
- IT-NCSM wave functions for ⁷Be for up to 8 eigenstates
- solution of the RGM with kernels involving the full many-body information
- SRG-evolved chiral NN interaction with α adjusted to reproduce ⁸B energy relative to threshold

Conclusions

Conclusions

- new era of ab-initio nuclear structure and reaction theory connected to QCD via chiral EFT
 - chiral EFT as universal starting point... propagate uncertainties & provide feedback
- consistent inclusion of 3N interactions in similarity transformations & many-body calculations
 - breakthrough in computation & handling of 3N matrix elements
- innovations in many-body theory: extended reach of exact methods & improved control over approximations
 - versatile toolbox for different observables & mass ranges
- many exciting applications ahead...

Epilogue

thanks to my group & my collaborators

- S. Binder, A. Calci, B. Erler, E. Gebrerufael, A. Günther, H. Krutsch, J. Langhammer, S. Reinhardt, C. Stumpf, R. Trippel, K. Vobig, R. Wirth Institut für Kernphysik, TU Darmstadt
- P. Navrátil TRIUMF Vancouver, Canada
- J. Vary, P. Maris Iowa State University, USA
- S. Quaglioni LLNL Livermore, USA
- P. Piecuch Michigan State University, USA

- H. Hergert, K. Hebeler Ohio State University, USA
- P. Papakonstantinou IPN Orsay, F
- C. Forssén Chalmers University, Sweden
- H. Feldmeier, T. Neff GSI Helmholtzzentrum

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung

COMPUTING TIME

Robert Roth – TU Darmstadt – 08/2012