

 $\cdot \circ \triangleleft < \land \lor >$

A WALK through the WORLD of CHIRAL DYNAMICS

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012

CONTENTS

- Intro: Why hadron-hadron scattering?
- Lesson 1: Pion-pion scattering
- Lesson 2: Pion-kaon scattering
- Lesson 3: Pion-nucleon scattering
- Lesson 4: Kaon-nucleon scattering
- Lesson 5: Goldstone boson scattering off D, D^{\star} -mesons
- Short summary & outlook

Introduction

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

WHY HADRON-HADRON SCATTERING?

• Weinberg's 1966 paper "Pion scattering lengths"

Weinberg, Phys. Rev. Lett. 17 (1966) 616

- pion scattering on a target with mass m_t and isospin T_t :

$$a_T = -rac{L}{1 + M_\pi/m_t} \left[T(T+1) - T_t(T_t+1) - 2
ight]$$

- pion scattering on a pion ["the more complicated case"]:

$$a_0 = rac{7}{4}L\,, \ \ a_2 = -rac{1}{2}L \qquad \qquad L = rac{g_V^2 M_\pi}{2\pi F_\pi^2} \simeq 0.1\,M_\pi^{-1}$$

amazing predictions - witness to the power of chiral symmetry

what have we learned since then?

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012 \cdot O \triangleleft C \wedge ∇ >

CHIRAL SYMMETRY of QCD

• Three flavor QCD:

Fritzsch, Gell-Mann, Leutwyler (1973)

$$egin{aligned} \mathcal{L}_{ ext{QCD}} = \mathcal{L}_{ ext{QCD}}^0 - ar{q} \mathcal{M} q \end{bmatrix}, \ \ q = egin{pmatrix} u \ d \ s \end{pmatrix}, \ \ \ \mathcal{M} = egin{pmatrix} m_u & \ & m_d \ & \ & m_s \end{pmatrix} \end{aligned}$$

• \mathcal{L}^0_{QCD} is invariant under **chiral** $SU(3)_L \times SU(3)_R$ (split off U(1)'s)

$$egin{aligned} \mathcal{L}^0_{ ext{QCD}}(G_{\mu
u},q',D_\mu q') &= \mathcal{L}^0_{ ext{QCD}}(G_{\mu
u},q,D_\mu q) \ q' &= RP_R q + LP_L q = Rq_R + Lq_L \quad R,L \in SU(3)_{R,L} \end{aligned}$$

conserved L/R-handed [vector/axial-vector] Noether currents:

$$egin{aligned} J_{L,R}^{\mu,a} &= ar{q}_{L,R} \gamma^{\mu} rac{\lambda^a}{2} q_{L,R} \,, & a = 1, \dots, 8 \ \partial_{\mu} J_{L,R}^{\mu,a} &= 0 & [ext{or} \ V^{\mu} &= J_L^{\mu} + J_R^{\mu} \,, & A^{\mu} = J_L^{\mu} - J_R^{\mu}] \end{aligned}$$

• Is this symmety reflected in the vacuum structure/hadron spectrum?

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012 · O < \land \bigtriangledown \checkmark \checkmark \checkmark \checkmark \checkmark

THE FATE of QCD's CHIRAL SYMMETRY

- the chiral symmetry is not "visible" (spontaneously broken)
 - no parity doublets
 - $ullet \left< 0 |AA| 0
 ight>
 eq \left< 0 |VV| 0
 ight>$
 - scalar condensate $\bar{q}q$ acquires v.e.v.
 - Vafa-Witten theorem
 - (almost) massless pseudoscalar bosons

• the chiral symmetry is realized in the Nambu-Goldstone mode

- weakly interacting massless pseudoscalar excitations
- approximate symmetry (small quark masses)

 $ightarrow \pi, K, \eta$ as Pseudo-Goldstone Bosons

• calls for an effective field theory

⇒ Chiral Perturbation Theory (CHPT)

THE ESSENCE of CHIRAL PERTURBATION THEORY + 7

- explores the consequences of chiral symmetry breaking in QCD
- has an underlying power counting, based on the scale separation
- relates many processes
- increasing number of LECs w/ higher orders, but: NOT prolific for basic processes
 - e.g. $\pi\pi \to \pi\pi$ at one loop: has 4 LECs $\pi\pi \to \pi\pi$ at two loops has only 2 new LECs

 $\pi N
ightarrow \pi N \ NN
ightarrow NN \ 3N$ -force

- and the + : predictions can be sharpened by combining with dispersion relations, coupled-channels, lattice, ..., but: there is no free lunch!
- and now lets see how this works and what we can learn...

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012 • O < \land \bigtriangledown \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

ELASTIC PION-PION SCATTERING

- Purest process in two-flavor chiral dynamics (really light quarks)
- scattering amplitude at threshold: two numbers (a_0, a_2)
- History of the prediction for a_0 :

LO (tree):	$a_0 = 0.16$	Weinberg 196		
NLO (1-loop):	$a_0=0.20\pm 0.01$	Gasser, Leutwyler 1983		
NNLO (2-loop):	$a_0 = 0.217 \pm 0.009$	Bijnens et al. 1996		

• even better: match 2-loop representation to Roy equation solution

Roy + 2-loop:
$$a_0 = 0.220 \pm 0.005$$
 Colangelo et al. 2000

 \Rightarrow this is an *amazing* prediction!

• same precision for a_2 , but corrections very small \ldots

HOW ABOUT EXPERIMENT?

ullet Kaon decays (K_{e4} and $K^0
ightarrow 3\pi^0$): most precise

• Lifetime of pionium: experimentally more difficult

Kaon decays:

 $a_0^0 = 0.2210 \pm 0.0047_{
m stat} \pm 0.0040_{
m sys}$ $a_0^2 = -0.0429 \pm 0.0044_{
m stat} \pm 0.0028_{
m sys}$

J. R. Batley et al. [NA48/2 Coll.] EPJ C 79 (2010) 635

Pionium lifetime:

 $|a_0^0 - a_0^2| = 0.264^{+0.033}_{-0.020}$

B. Adeva et al. [DIRAC Coll.] PL B 619 (2005) 50

and how about the lattice?

 \Rightarrow direct and indirect determinations of the scattering lengths

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012 · O < \land \bigtriangledown \checkmark \checkmark

THE GRAND PICTURE

Fig. courtesy Heiri Leutwyler 2012

• one of the finest tests of the Standard Model (but: direct lattice a_0 missing)

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012 · O < \land \bigtriangledown \checkmark \checkmark \checkmark \checkmark \checkmark

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

STRANGE QUARK MYSTERIES

• Is the strange quark really light? $m_s \sim \Lambda_{
m QCD}$

 \rightarrow expansion parameter: $\xi_s = \frac{M_K^2}{(4\pi F_\pi)^2} \simeq 0.18 \quad \left[\text{SU(2):} \xi = \frac{M_\pi^2}{(4\pi F_\pi)^2} \simeq 0.014\right]$

• many predictions of SU(3) CHPT work quite well, but:

 \hookrightarrow indications of bad convergence in some recent lattice calculations:

* masses and decay constants, $K_{\ell 3}$ -decays Allton et al. 2008, Boyle et al. 2008 \hookrightarrow suppression of the three-flavor condensate? * sum rule: $\Sigma(3) = \Sigma(2)[1 - 0.54 \pm 0.27]$ Moussallam 2000 * lattice: $\Sigma(3) = \Sigma(2)[1 - 0.23 \pm 0.39]$ Fukuya et al. 2011

• possible solution: resummed CHPT

Bernard, Descotes-Genon, ... 2011

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012 · O < < < < > > > > • •

ELASTIC PION-KAON SCATTERING

- Purest process in three-flavor chiral dynamics
- scattering amplitude at threshold: two numbers $(a_0^{1/2}, a_0^{3/2})$
- History of the chiral predictions:

	CA [1]	1-loop [2]	2-loop [3]
$a_0^{1/2}$	0.14	0.18 ± 0.03	0.220 [0.17 0.225]
$ a_0^{3/2} $	-0.07	-0.05 ± 0.02	$-0.047[-0.075\ldots -0.04]$

[1] Weinberg 1966, Griffith 1969

[2] Bernard, Kaiser, UGM 1990

[3] Bijnens, Dhonte, Talavera 2004

• match 1-loop representation to Roy-Steiner equation solution

$$a_0^{1/2} = 0.224 \pm 0.022 \;,\;\; a_0^{3/2} = -0.0448 \pm 0.0077$$

Büttiker et al. 2003

THE GRAND PICTURE

Fig. from Lang et al. [1207.3204]

- tension between lattice results and/or Roy-Steiner
- need improved lattice results (more direct calculations)

 \Rightarrow work required

 Λ

<

 ∇

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

PION-NUCLEON SCATTERING

- simplest scattering process involving nucleons
- intriguing LO prediction for isoscalar/isovector scattering length:

$$a_{
m CA}^+=0, \;\; a_{
m CA}^-=rac{1}{1+M_\pi/m_p}rac{M_\pi^2}{8\pi F_\pi^2}=79.5\cdot 10^{-3}/M_\pi,$$

- chiral corrections:
 - chiral expansion for a^- converges fast

Bernard, Kaiser, UGM 1995

- large cancellations in a^+ , even sign not known from scattering data

	$\mathcal{O}(q)$	${\cal O}(q^2)$	${\cal O}(q^3)$	${\cal O}(q^4)$
fit to KA85	0.0	0.46	-1.00	-0.96
fit to EM98	0.0	0.24	0.49	0.45
fit to SP98	0.0	1.01	0.14	0.27

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012 · O < < \land \bigtriangledown \lor \triangleright \lor

Fettes, UGM 2000

A WONDERFUL ALTERNATIVE: HADRONIC ATOMS

- Hadronic atoms: bound by the static Coulomb force (QED)
- Many species: $\pi^+\pi^-$, $\pi^\pm K^\mp$, π^-p , π^-d , K^-p , K^-d , ...
- Observable effects of QCD: strong interactions as small perturbations

 \star energy shift ΔE

 \star deacy width Γ

⇒ access to scattering at zero energy!
 = S-wave scattering lengths

- can be analyzed in suitable NREFTs
 Pionic hydrogen
 - Pionic deuterium

Gasser, Rusetsky, ... 2002 Baru, Hoferichter, Kubis ... 2011 \rightarrow talk by Martin Hoferichter

PION–NUCLEON SCATTERING LENGTHS

• superbe experiments performed at PSI

 \Rightarrow very precise value for a^- & first time definite sign for a^+

for details, see Hoferichter's talk

19

Gotta et al.

Lesson 4

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

ANTIKAON-NUCLEON SCATTERING

- $K^-p \rightarrow K^-p$: fundamental scattering process with strange quarks
- coupled channel dynamics
- dynamic generation of the $\Lambda(1405)$ Dalitz, Tuan 1960
- major playground of **unitarized CHPT**

• chiral Lagrangian + unitarization leads to generation of certain resonances like e.g. the $\Lambda(1405), S_{11}(1535), S_{11}(1650), \ldots$

Kaiser, Siegel, Weise, Oset, Ramos, Oller, UGM, Lutz, ...

• loopholes: convergence a posteriori, crossing symmetry, on-shell approximation, unphysical poles, ...

A PUZZLE RESOLVED

- DEAR data inconsistent with scattering data
 - UGM, Raha, Rusetsky 2004
- \Rightarrow vaste number of papers ...

• SIDDHARTA to the rescue

Bazzi et al. 2011

 \Rightarrow more precise, consistent with KpX

$$\epsilon_{1s} = -283 \pm 36(\mathrm{stat}) \pm 6(\mathrm{syst}) \,\mathrm{eV}$$

 $\Gamma_{1s} = 541 \pm 89(\mathrm{stat}) \pm 22(\mathrm{syst}) \,\mathrm{eV}$

 $< \land \nabla$

• 0

 \langle

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012

CONSISTENT ANALYSIS

- kaonic hydrogen + scattering data can now be analyzed consistently
- use the chiral Lagrangian at NLO, two groups (different schemes)

Ikeda, Hyodo, Weise 2011; UGM, Mai 2012

- 14 LECs and 3 subtraction constants to fit
- \Rightarrow simultaneous description of the SIDDHARTA and the scattering data

KAON–NUCLEON SCATTERING LENGTHS

$$a_{0} = -1.81^{+0.30}_{-0.28} + i \ 0.92^{+0.29}_{-0.23} \text{ fm}$$

$$a_{1} = +0.48^{+0.12}_{-0.11} + i \ 0.87^{+0.26}_{-0.20} \text{ fm}$$

$$a_{K^{-}p} = -0.68^{+0.18}_{-0.17} + i \ 0.90^{+0.13}_{-0.13} \text{ fm}$$
SIDDHARTA only:
$$a_{K^{-}p} = -0.65^{+0.15}_{-0.15} + i \ 0.81^{+0.18}_{-0.18} \text{ fm}$$

• clear improvement compared to scattering data only

 \Rightarrow fundamental parameters to within about 15% accuracy

KAON-DEUTERON SCATTERING LENGTH

• analyze K^-d , imposing consistency with the $\bar{K}N$ scattering lengths

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012 · O < < < < < > > > >

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$

EFFECTIVE LAGRANGIAN for $\phi D o \phi D$

- Goldstone boson octet (π, K, η) scatters off *D*-meson triplet (D^0, D^+, D_s^+)
- multi-scale/multi-faceted problem:
 - light particles, chiral symmetry \rightarrow chiral expansion in (p, m_q)
 - heavy particles, heavy quark symmetry ightarrow expansion in $1/m_c$
 - isospin-violation ightarrow strong = quark mass difference $m_d
 eq m_u$

 \rightarrow electromagnetic = quark charge difference $q_u \neq q_d$

- 16 channels with different total strangeness and isospin
 - some are perturbative
 - some are non-perturbative, require resummation \rightarrow possible molecules

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012 · O < < \land \bigtriangledown \lor \triangleright \lor

RESULTS for $\phi D o \phi D$

• $T(\phi D \rightarrow \phi D)$ depends on two LECs at NLO h_3, h_5 using large- N_c :

 h_3 the mass of the $D^*_{s0}(2317)$ as a DK molecule

 h_5 from naturalness, $h_5/M_D^2 \in [-1,+1]$

$$\Rightarrow \left| \Gamma(D_{s0}^*(2317)^+ \to D_s^+ \pi^0) = (180 \pm 110) \, \text{keV} \right| \text{ testable prediction}$$

note: much smaller in quark models (a few keV)

see also Gutsche et al., Lutz, Soyeur, ...

• expectation for the scattering length for DK(I = 0) in the molecular picture:

$$a_{DK}^{I=0} = -g_{ ext{eff}}^2 \Delta_{DK} = -rac{1}{2\sqrt{\mu_{DK}arepsilon}} \simeq -1 \, ext{fm}$$

• no data, but first lattice investigations at varying quark masses

Liu, Lin, Orginos, PoS LATTICE **2008**, 112 and more to come!

QUARK MASS DEPENDENCE

• predictions: channels with no poles

Guo, Hanhart, UGM 2009; Wang, Wang 2012

Λ

0

•

 \leq

<

 ∇

QUARK MASS DEPENDENCE cont'd

• *predictions:* channels with poles \rightarrow resonances or molecular states

a pair of poles above thr.

$$a_{D\pi}^{(0,1/2)}=0.35(1)$$
 fm

a bound states below thr. $D_{s0}^{*}(2317)$

$$a_{DK}^{(1,0)} = -0.93(5)$$
 fm

 \Rightarrow lattice test of the molecular nature

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012 • O < \wedge ∇ > \triangleright •

NEW RESULTS for $\phi D ightarrow \phi D$

- new lattice data using MILC plus Fermilab actions L. Liu, K. Orginos 2012
- ullet more data ightarrow allow for inclusion of N_c -suppressed operators
- ullet fix again the pole of the $D^*_{s0}(2317)
 ightarrow 5$ fit parameters
- Results:

Liu, Orginos, Guo, Hanhart, UGM 2012

- all parameters of natural size, large- N_c hierarchy obeyed!
- $-a(DK(I=0)) = -0.85^{+0.07}_{-0.05}$ fm

- improved prediction for the IV width

$$\Gamma(D^*_{s0}(2317)^+ o D^+_s \pi^0) = (89 \pm 27) \, {
m keV}$$

- also unconstrained fits (6 param.), larger uncertainties

NEW RESULTS for ϕD –SCATTERING

• 5 parameter fit (last points not included)

Liu, Orginos, Guo, Hanhart, UGM 2012

Ο

 ∇

NATURE of the $D_{s1}(2460)$

- Nature of the $D_{s1}(2460)$: $M_{D_{s1}(2460)} M_{D_{s0}^*(2317)} \simeq M_{D^*} M_D$
- \Rightarrow most likely a $D^{\star}K$ molecule (if the $D^{\star}_{s0}(2317)$ is DK)
- \Rightarrow study Goldstone boson scattering off *D* and *D*^{*}-mesons
- Use heavy meson chiral perturbation theory Wise, Donoghue et al., Casalbuoni et al., ...

- T-matrix:
- Unitarization (as before) \rightarrow find poles in the complex plane

 $\cdot \circ \triangleleft < \land \lor >$ A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012

KAON MASS DEPENDENCE

• Mass and binding energy: $M_{
m mol} = M_K + M_H - \epsilon$ Cleven, Guo, Hanhart, UGM 2009

 \Rightarrow typical for a molecule \rightarrow test in LQCD

SUMMARY & OUTLOOK

- Hadron-hadron scattering: important role of chiral symmetry (CHPT)
 - \rightarrow combine with dispersion relations, unitarization, lattice
- Pion-pion scattering
 - \rightarrow a fine test of the Standard Model
- Pion-kaon scattering
 - \rightarrow tension between lattice results and/or Roy-Steiner solution
- Pion-nucleon scattering
 - \rightarrow superbe accuracy from EFTs for pionic hydrogen/deuterium
- Antikaon-nucleon scattering
 - \rightarrow consistent determination of the scattering lengths possible
- Goldstone-boson scattering off D, D^{\star} -mesons
 - \rightarrow lattice test of molecular states possible

exciting times ahead of us

A walk through the world of chiral dynamics – Ulf-G. Meißner – Chiral Dynamics 2012, August 5th -10th, 2012

 $\cdot \circ \triangleleft < \land \lor > \triangleright \bullet$