Meson chiral perturbation theory meets lattice QCD

Laurent Lellouch

CPT Marseille

(Special thanks to A. Sastre and to colleagues from BMWc and FLAG)

LQCD and χ PT: a long history

For many years χPT compensated LQCD's shortcomings

- quenched χ PT (q χ PT) (Morel '87, Sharpe '90-'92, Bernard et al '92,...)
 - \longrightarrow limitations of quenched approximation
 - \rightarrow (too) long extrapolations $m_{ud}^{val} \searrow m_{ud}^{ph}$
- partially-quenched χ PT (pq χ PT) (Bernard et al '94, Sharpe et al '00,...) \rightarrow (too long) extrapolations m_{ud}^{val} , $m_{ud}^{sea} \searrow m_{ud}^{ph}$
- rooted staggered χ PT (rS χ PT) (Sharpe '94, Lee et al '99, Aubin et al '03, ...) \longrightarrow remedy staggered flavor excess
- PGBs lightest dofs in QCD $\longrightarrow \chi$ PT gives finite-volume (FV) effects

LQCD and χ PT: a long history

- Huge progress in LQCD simulations
 - now possible to vary m_{ud} (and m_s) $\searrow m_{ud}^{\rm ph}$
 - \Rightarrow test χ PT
 - ⇒ determine LECs from first principles
 - ⇒ compute important observables for PGB phenomenology
 - Better than Nature:
 - *m_{ud}* and *m_s* freely tuned
 - Can tune valence and sea quark masses independently
 - ⇒ LEC combinations that cannot be determined from phenomenology
 - Can further play with N_f, N_c, ...
 - \Rightarrow try out different regimes of χ PT (see Bijnens' review)

"Ask not what χ PT can do for LQCD – ask what LQCD can do for χ PT"

Comparison of parameters reached by different LQCD collaborations

• Time of CD 09, typically $M_{\pi} \gtrsim 250$ MeV, $a \gtrsim 0.09$ fm and $L \lesssim 3$ fm

- Today, $M_{\pi} \searrow 120$ MeV, $a \searrow 0.05$ fm and $L \nearrow 6$ fm
- \Rightarrow can clearly make abundant contact with χ PT

χ PT meets LQCD on a torus

Lattice QCD (LQCD) calculations performed in finite periodic box $V = T \times L^3$ w/ $T \sim L$

For large V such that

$$ho \sim rac{2\pi}{L} \ll \Lambda_\chi \sim 4\pi F \Leftrightarrow FL \gg 1$$

and small m_q such that

$$M^2 = \frac{2m_q\Sigma}{F^2} \ll \Lambda_{\chi}^2$$

low energy physics described by usual chiral lagrangian (Gasser et al '88)

$$\mathcal{L} = rac{F^2}{4} \operatorname{tr} \left\{ \partial_\mu U^\dagger \partial_\mu U
ight\} - rac{\Sigma}{2} \left\{ \mathcal{M} U^\dagger + \operatorname{cc}
ight\} + O(p^4)$$

with $U = e^{i2\pi/F} \in SU(N_q)$ and $\mathcal{M} = mI$

Gaussian part of action

$$\Rightarrow \left\langle \frac{(\pi_p^a)^2}{F^2} \right\rangle \sim \frac{1}{F^2 V} \frac{1}{p^2 + M^2} \sim \frac{1}{(FL)^2} \frac{1}{(2\pi)^2 n^2 + (ML)^2}$$

and relative size of *ML* and 1 or *FL* \gg 1 determines different regimes of χ PT

Regimes of χ PT on a torus

$$\langle \frac{(\pi_{\rho}^{a})^{2}}{F^{2}} \rangle \sim \frac{1}{F^{2}V} \frac{1}{\rho^{2} + M^{2}} \sim \frac{1}{(FL)^{2}} \frac{1}{(2\pi)^{2} n^{2} + (ML)^{2}}$$

(1) $ML \gg 1$ $(2\pi) \longrightarrow \frac{|\pi_p^a|}{F} \sim \frac{1}{(FL)(ML)} \ll 1$ $\longrightarrow U = 1 + i\frac{2\pi}{F} + \cdots \& \frac{1}{V} \sum_p \simeq \int \frac{d^4p}{(2\pi)^4}$ $\longrightarrow \infty$ -volume p-expansion w/ $p \sim M$, up to e^{-ML} corrections (2) $ML \sim 1$ $(2\pi) \longrightarrow \frac{|\pi_p^a|}{F} \sim \frac{1}{(FL)} \ll 1$ $\longrightarrow U = 1 + i\frac{2\pi}{F} + \cdots$ but $\frac{1}{V} \sum_p \neq \int \frac{d^4p}{(2\pi)^4}$ \longrightarrow finite-volume p-expansion w/ $p \sim M$

(3) $ML \lesssim 1/FL \Leftrightarrow m_q \Sigma V \lesssim 1 \Rightarrow ML \ll 1$

 $\rightarrow \epsilon$ -expansion w/ $M/\Lambda_{\chi} \sim (p/\Lambda_{\chi})^2 \sim \epsilon^2$ and U_0 treated non-perturbatively (Gasser et al (87))

Here focus on (1)

The flavors of LQCD and χ PT

LQCD is QCD when $a \rightarrow 0$ and $V \rightarrow \infty$

- $N_f = 2: m_u^{\text{sea}} = m_d^{\text{sea}}, m_{s,\dots,t}^{\text{sea}} \rightarrow \infty$
 - Not a valid approx. of QCD
 - No systematic deviation yet observed

 $N_f = 2+1: m_u^{\text{sea}} = m_d^{\text{sea}} \le m_s^{\text{sea}}, m_{c,\dots,t}^{\text{sea}} \to \infty$

- Approximates low-*E* QCD up to $\frac{1}{N_c} \left(\frac{\Lambda_{\text{QCD}}}{m_c}\right)^2$ corrections
- \rightarrow Good to % level

 $\begin{array}{ll} N_{f} = 2 + 1 + 1; & m_{u}^{\text{sea}} = m_{d}^{\text{sea}} \leq m_{s}^{\text{sea}} \leq m_{c}^{\text{sea}}, & m_{b,t}^{\text{sea}} \\ \rightarrow \infty \end{array}$

- Approximates low-*E* QCD up to $\frac{1}{N_c} \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^2$ corrections
- → Good to per mil level

 χ PT is a systematic expansion of QCD at low-*E* (see talk by Bijnens)

 $N_f = 2: m_u, m_d \rightarrow 0, m_{s, \dots, t}$ fixed

- Expansion in $\frac{p^2, M_{\pi}^2}{(\Lambda_{\chi}^{N_f=2})^2}, \frac{m_{ud}}{m_s}$
- Can be applied to N_f=2 LQCD results in *χ*-regime, but LECs are not QCD LECs
- When applied to N_f≥2+1 LQCD results in χ-regime, LECs are QCD LECs, up to corrections on LHS

 $N_f = 3: m_u, m_d, m_s \rightarrow 0, m_{c, \dots, t}$ fixed

- Expansion in $\frac{p^2, M_{\pi, K, \eta}^2}{(\Lambda_{\chi}^{N_{r=3}})^2}$
- Cannot be applied to N_f = 2 LQCD results
- When applied to N_f ≥ 2+1 LQCD results in χ-regime, fitted LECs are QCD LECs, up to corrections on LHS

F_{π} and M_{π} in $SU(2) \chi PT$

At NNLO (Colangelo et al '01)

$$M_{\pi}^{2} = M^{2} \left\{ 1 - \frac{1}{2} x \ln \frac{\Lambda_{3}^{2}}{M^{2}} + \frac{17}{8} x^{2} \left(\ln \frac{\Lambda_{M}^{2}}{M^{2}} \right)^{2} + x^{2} k_{M} + O(x^{3}) \right\}$$

$$F_{\pi} = F_{2} \left\{ 1 + x \ln \frac{\Lambda_{4}^{2}}{M^{2}} - \frac{5}{4} x^{2} \left(\ln \frac{\Lambda_{F}^{2}}{M^{2}} \right)^{2} + x^{2} k_{F} + O(x^{3}) \right\}$$

where
$$x = \frac{M^2}{(4\pi F_2)^2}$$
 and $M^2 = 2m_{ud}B_2$ and

$$\ln \frac{\Lambda_M^2}{\bar{M}_\pi^2}, \ \ln \frac{\Lambda_F^2}{\bar{M}_\pi^2} \leftrightarrow \frac{7\bar{\ell}_1 + 8\bar{\ell}_2}{15}$$

Illustration: (see also Scholz's talk) combined, correlated fits to m_{ud} dependence of $N_f = 2 + 1$ BMWc '10 results from 47 simulations w/

 $M_{\pi} \searrow 120 \text{ MeV}, \quad 5 \text{ a's w/ } a: 0.116 \searrow 0.054 \text{ fm} \quad \text{and} \quad L \nearrow 6 \text{ fm}$

Small terms in powers of $(M_{s\bar{s}}^2 - M_{s\bar{s}}^{ph,2})$ and of *a*, and FV corrections, as required

Reach of $SU(2) \chi PT?$ – Fit quality

PRELIMINARY

- NLO appears to work up to $M_{\pi} \lesssim 350-400 \, {
 m MeV}$
- NNLO shows no sign of breaking down up to $M_{\pi} \sim 550 \, {
 m MeV}$
- Loose priors imposed on NNLO terms
- Dependence of results on priors must be studied

Reach of $SU(2) \chi PT?$ – Stability of LO LECs

PRELIMINARY

Above ranges of validity for χ PT only make sense if LECs' values independent of M_{π}^{cut} in range

• Observed stability up to $M_{\pi} \lesssim 350 - 400 \, {
m MeV}$ for NLO

- Up to $M_{\pi} \lesssim 550$ MeV for NNLO
- → range given by fit quality confirmed

Reach of $SU(2) \chi PT?$ – Stability of NLO LECs

PRELIMINARY

Above ranges of validity for χ PT only make sense if LECs' values independent of M_{π}^{cut} in range

- Relative stability up to $M_{\pi} \leq 400 \text{ MeV}$ for NLO \longrightarrow fit quality range seems correct
- NNLO more stable over full range
- Have to push NNLO fits to 600 MeV to confirm

Reach of SU(2) χ PT? – Relative size of corrections

PRELIMINARY

Above ranges of validity only make sense if $LO \gg NLO \gg NNLO$ in range From typical fit

Coherent overall picture \Rightarrow range of validity of:

- NLO SU(2) χ PT extends up to $M_{\pi} \lesssim 350-400 \, \text{MeV}$
- NNLO *SU*(2) χ PT extends up to $M_{\pi} \sim 500 \, {
 m MeV}$

w/ BMWc's percent level errors. Caveat: χ PT asymptotic expansion ...

PRELIMINARY

 $M_{\pi} \leq 350 \, {
m MeV}$

(Lattice data are corrected for m_s, a and FV effects using NNLO fit results)

Other SU(2) observables

PRELIMINARY

Comparison w/ FLAG LO compilation

$(\Sigma_2 \text{ in } \overline{\text{MS}} @ 2 \text{ GeV})$

Very nice consistency of recent $N_f = 2 + 1$ results

 $\frac{F_{\pi}}{F} = 1.073(15)$ [1.4%] (FLAG-I)

Aiming for error of $\sim 0.6\%$

 $\Sigma^{1/3} = 269(18) \,\text{MeV}$ [7%] (FLAG-I)

Aiming for error of $\sim 1.5\%$

Comparison w/ FLAG NLO compilation

• Poor agreement between $N_f = 2 + 1$ results

• $N_f = 2 + 1 + 1$ results for $\bar{\ell}_4$ are a bit off, but $M_{\pi} \ge 270 \,\text{MeV}$

- No N_f = 2 + 1 FLAG estimate for the moment
- Aiming for error $\leq 5\%$

• $N_f = 2 + 1$ FLAG-I estimate: $\bar{\ell}_3 = 3.2(8)$ [25%]

• Aiming for error $\leq 15\%$

Light quark masses: motivation

Very similar studies give mud and ms ab initio

Need QED on lattice or phenomenological input to get m_u and m_d

- Fundamental parameters of the standard model
- Precise values → stability of matter, *N-N* scattering lengths, presence or absence of strong CP violation, etc.
- Couplings to the Higgs
- Information about BSM: theory of fermion masses must reproduce these values
- Nonperturbative (NP) computation is required
- Would be needle in a haystack problem if not for χSB
- \longrightarrow tremendous progress has been made in recent years

Fixing m_u, m_d, m_s

 χ SB \rightarrow observables most sensitive to m_u , m_d , m_s are PGB masses: $M_{\pi^+}^2 \sim m_{ud}$, $M_{K^+}^2 \sim (m_s + m_u)$, $M_{K^0}^2 \sim (m_s + m_d)$

NB:- π^0 avoided because of π^0 - η mixing and quark-disconnected contributions - Need 4th observable to fix *a*

- LQCD simulation w/ $m_u^{\text{sea}} \neq m_d^{\text{sea}}$ and QED \rightarrow tune m_d^{lat} , q = u, d, s, so that $M_P^{\text{lat}} = M_P^{\text{ph}}$, $P = \pi^+, K^+, K^0$
- $\begin{array}{l} \textcircled{O} \quad N_{f} \geq 2+1 \text{ simulation } w/m_{u}^{\text{sea}} = m_{d}^{\text{sea}} \text{ and no QED} \\ \rightarrow \text{ tune } m_{q}^{\text{lat}}, \ q = ud, s, \text{ so that } M_{P}^{\text{lat}} = \bar{M}_{P}, \ P = \pi, K \\ \rightarrow \bar{M}_{\pi,K} \text{ are PGB in isospin limit (with QED corrections subtracted)} \\ \rightarrow \text{ need } \chi \text{PT} \text{ and phenomenology (see FLAG `11)} \end{array}$

 $\bar{M}_{\pi} = 134.8(3) \text{ MeV} [0.2\%], \qquad \bar{M}_{K} = 494.2(5) \text{ MeV} [0.1\%]$

Not limiting factor

Light quark masses: FLAG tables $-N_f=2+1$

	ž.											
Collab.	qnq	Rud	\$ 10 10	1 ⁷ 8	ienorm,	'n	m _{ud}	m _s				
PACS-CS 12*	Р	*			*	а	3.12(24)(8)	83.60(0.58)(2.23)				
RBC/UKQCD 12	C	*	0	7	*	С	3.39(9)(4)(2)(7)	94.2(1.9)(1.0)(0.4)(2.1)				
LVdW 11	C	0	<u>×</u>	<u>×</u>	0	_	3.31(7)(20)(17)	94.2(1.4)(3.2)(4.7)				
PACS-CS 10	A	*			*	а	2.78(27)	86.7(2.3)				
MILC 10A	C	0		7	0	-	3.19(4)(5)(16)	-				
HPQCD 10	A	0	*	7	. *	-	3.39(6)*	92.2(1.3)				
BMW 10A, 10B ⁺	A	*	*	*	*	b	3.469(47)(48)	95.5(1.1)(1.5)				
RBC/UKQCD 10A	А	0	0	*	*	С	3.59(13)(14)(8)	96.2(1.6)(0.2)(2.1)				
Blum 10 [†]	А	0		0	*	—	3.44(12)(22)	97.6(2.9)(5.5)				
PACS-CS 09	А	*			*	а	2.97(28)(3)	92.75(58)(95)				
HPQCD 09	А	0	*	*	*	-	3.40(7)	92.4(1.5)				
MILC 09A	С	0	*	*	0	_	3.25 (1)(7)(16)(0)	89.0(0.2)(1.6)(4.5)(0.1)				
MILC 09	Α	0	*	*	0	_	3.2(0)(1)(2)(0)	88(0)(3)(4)(0)				
PACS-CS 08	Α	*				_	2.527(47)	72.72(78)				
RBC/UKQCD 08	А	0		*	*	_	3.72(16)(33)(18)	107.3(4.4)(9.7)(4.9)				
CP-PACS/ JLQCD 07	А	•	*	*	•	_	$3.55(19)(^{+56}_{-20})$	90.1(4.3)(^{+16.7} _{-4.3})				
HPQCD 05	А	0	0	0	0	_	3.2(0)(2)(2)(0) [‡]	87(0)(4)(4)(0) [‡]				
MILC 04, HPQCD/ MILC/UKQCD 04	А	0	0	0	•	-	2.8(0)(1)(3)(0)	76(0)(3)(7)(0)				

Light quark masses: FLAG tables $-N_f=2$

		Walt .	\$	٩	~			
Collab.	φnq	frid.	\$ × 0	7	renorn	, UU	m _{ud}	ms
ETM 10B	А	0	*	0	*	а	3.6(1)(2)	95(2)(6)
JLQCD/TWQCD 08A	Α	0		•	*	-	4.452(81)(38) (⁺⁰ 227)	-
RBC 07 [†]	Α			*	*	-	4.25(23)(26)	119.5(5.6)(7.4)
ETM 07	А	0	•	0	*	-	3.85(12)(40)	105(3)(9)
QCDSF/ UKQCD 06	А	•	*	•	*	-	4.08(23)(19)(23)	111(6)(4)(6)
SPQcdR 05	А		0	0	*	_	$4.3(4)(^{+1.1}_{0.0})$	$101(8)(^{+25}_{0})$
ALPHA 05	А	•	0	*	*	b	() (=0.0)	97(4)(18) [§]
UKQCD 04	А	•	*	•	*	-	4.7(2)(3)	119(5)(8)
JLQCD 02	А			0	•	_	$3.223(^{+46}_{-69})$	$84.5(^{+12.0}_{-1.7})$
CP-PACS 01	А	•	•	*	•	-	$3.45(10)(^{+11}_{-18})$	89(2)(⁺² ₋₆)*

m_{ud} and m_s @ 2 GeV in $\overline{\text{MS}}$ – FLAG compilation

Accuracies reached in calculations $\leq 2\% \longrightarrow$ worry about $(\Lambda_{QCD}/m_c)^2$, $\alpha_s(m_c) [\alpha, (m_u - m_d)/\Lambda_{QCD}]$ corrections

Individual m_u and m_d

 $N_f \ge 2 + 1$ calculations are performed w/ $m_u = m_d$ and no QED

⇒ need χ PT and phenomenology ⇒ leave *ab initio* realm

Use χPT (Dashen '67, Gasser et al '84, '85) and pheno. to subtract EM effects (FLAG '11)

 $\hat{M}_{K^+} = 491.2(7) \,\mathrm{MeV}$ $\hat{M}_{K^0} = 497.2(4) \,\mathrm{MeV}$

- Compute partially quenched $M_{K^+}^{\text{val}}$ & $M_{K^0}^{\text{val}}$ w/ $m_u^{\text{val}} \neq m_d^{\text{val}}$
- Tune $m_{u}^{\text{val}} \& m_{d}^{\text{val}}$ so that $M_{P}^{\text{val}} = \hat{M}_{P}, P = K^{+}, K^{0}$
- Correct up to $O\left(\frac{m_u-m_d}{M_{QCD}}\right)^2$ sea effects

Use dispersive analysis of $\eta \rightarrow 3\pi$ (Anisovich et al '96, Ditsche et al '09) (see talk by Lanz)

$$A(s,t,u) \propto -rac{1}{Q^2}$$

$$Q^2 \equiv \frac{m_s^2 - m_{ud}^2}{m_d^2 - m_u^2}$$

• Precise
$$m_{ud}$$
 and $m_s/m_{ud} \Rightarrow$

$$m_{u/d} = m_{ud} \left\{ 1 \mp \frac{1}{4Q^2} \left[\left(\frac{m_s}{m_{ud}} \right)^2 - 1 \right] \right\}$$

• Conservative Q = 22.3(8) (Leutwyler '09)

Individual m_u and m_d

Assumes Dashen thm violations (FLAG '11)

$$\Delta_P^\gamma \equiv M_P^2 - \hat{M}_P^2, \quad \Delta_\pi = M_{\pi^+}^2 - M_{\pi^0}^2$$

from Q^2 including error from unknown NNLO *SU*(3) corrections

Turning around $Q^2 \leftrightarrow \epsilon$ gives (FLAG '11) $\Rightarrow Q^2 \stackrel{\text{NLO}}{=} 497(94)$ [19%]

Systematic error driven by

 $\hat{M}^2_{K^0} - \hat{M}^2_{K^+} = 6.0(8) \ [13\%]$ $\Rightarrow \delta(m_d - m_u) \sim 13\%$ Relation to LH method (Gasser et al '85)

$$Q^2 = rac{\hat{M}_K^2}{\hat{M}_\pi^2} rac{\hat{M}_K^2 - M_\pi^2}{\hat{M}_{K^0}^2 - \hat{M}_{K^+}^2} \left[1 + O\left(rac{m_s}{\Lambda_\chi^{N_f=3}}
ight)^2
ight]$$

$$\hat{M}_{P}^{2}\equivrac{\hat{M}_{P^{+}}^{2}+\hat{M}_{P^{0}}^{2}}{2},\quad P=\pi,K$$

Using EM and smaller corrections (FLAG '11)

$$\Rightarrow \epsilon = 0.70(28) + O\left(rac{m_s}{\Lambda_\chi^{N_t=3}}
ight)^2$$
 [40%]

Systematic error driven by

 $Q^2 = 497(36) [7\%]$ $\Rightarrow \delta(m_d - m_u) \sim 7\%$

Error from RHS smaller since ϵ obtained from Q^2 up to NNLO SU(3) corrections

→ will change w/ improved QCD+QED calculations (see Izubuchi's review)

m_u and m_d @ 2 GeV in $\overline{\text{MS}}$ – FLAG compilation

Improvement less spectacular because EM corrections are estimated w/ phenomenology

Further improvement requires QCD+QED calculations (see Izubuchi's talk)

Conclusion

- LQCD and χ PT have a long history
- Freedom to vary all of QCD parameters
 - → new combinations of LECs
 - \rightarrow other regimes of χPT
- Tremendous recent advances in LQCD
 - $\rightarrow\,$ LQCD finally paying back debt to $\chi {\rm PT}$
 - ightarrow explore the range of validity of $\chi {\rm PT}$
 - → precise determinations of LECs

Future:

- many more systematic analyses around and below $M_{\pi}^{\rm ph}$
 - $\rightarrow\,$ more and more precise LECs
 - → NNLO LECs
 - → high precision results for F_K/F_π , $f_+(0)$, $K \to \pi\pi$, etc.
- inclusion of QED and isospin breaking effects
- systematic inclusion of sea charm

Conclusion

LQCD and meson χ PT meet in many places:

• Future already here in Newport News - talks by:

- Chris Sachrajda: "Non-leptonic and rare Kaon decays in Lattice QCD"
- Taku Izubuchi: "Isospin breaking studies from lattice QCD + QED"
- E. Scholz: "Determination of SU(2) ChPT LECs from 2+1 flavor staggered lattice simulations"
- A. Deuzeman: "Light meson physics from 2+1+1 flavours of twisted mass Wilson fermions"
- C. Bernard: "Electromagnetic contributions to pseudoscalar masses"
- W. Lee: "Recent progress in staggered ChPT"
- P. Fritzsch: "The Lambda parameter and strange quark mass in two-flavour QCD"
- M. Golterman: "Two-pion excited state contribution to the axial vector and pseudoscalar correlators"
- A. Shindler: "Corrections to the Banks-Casher relation with Wilson quarks"
- See also FLAG review (EPJC 71 (2011))