$\eta \rightarrow \mathbf{3}\pi$ and quark masses

Stefan Lanz

Department of Astronomy and Theoretical Physics, Lund University

International Workshop on Chiral Dynamics,

August 6 - 10, 2012, Jefferson Lab

SWISS NATIONAL SCIENCE FOUNDATION

Vetenskapsrådet

Outline

- Introduction
- 2 Dalitz plot measurements
- 3 Theoretical work
- 4 Our dispersive analysis
- 5 Comparison of results

Outline

1 Introduction

2 Dalitz plot measurements

3 Theoretical work

4 Our dispersive analysis

5 Comparison of results

not directly accessible to experiment due to confinement

■ $m_{u,d,s} \ll$ scale of QCD \Rightarrow small contribution to hadronic quantities

not directly accessible to experiment due to confinement

■ $m_{u,d,s} \ll$ scale of QCD \Rightarrow small contribution to hadronic quantities

■ Gell-Mann–Oakes–Renner relations:

[Gell-Mann, Oakes & Renner '68]

(meson mass)² = (spontaneous χ SB) × (explicit χ SB)

not directly accessible to experiment due to confinement

- $m_{u,d,s} \ll$ scale of QCD \Rightarrow small contribution to hadronic quantities
- Gell-Mann–Oakes–Renner relations:

[Gell-Mann, Oakes & Renner '68]

■ (meson mass)² = (spontaneous
$$\chi$$
SB) × (explicit χ SB)
quark condensate $\langle \bar{q}q \rangle$

not directly accessible to experiment due to confinement

- $m_{u,d,s} \ll$ scale of QCD \Rightarrow small contribution to hadronic quantities
- Gell-Mann–Oakes–Renner relations:

[Gell-Mann, Oakes & Renner '68]

$$\square m_{\pi^+}^2 = B_0(m_u + m_d)$$

- $\blacksquare m_{\pi^0}^2 = B_0(m_u + m_d)$
- $\blacksquare m_{K^+}^2 = B_0(m_u + m_s)$

$$\blacksquare m_{K^0}^2 = B_0(m_d + m_s)$$

$$\blacksquare m_{\eta}^2 = B_0 \frac{m_u + m_d + 4m_s}{3}$$

$$m_{\pi^+}^2 = B_0(m_u + m_d)$$

$$m_{\pi^0}^2 = B_0(m_u + m_d) + \frac{2\epsilon}{\sqrt{3}}B_0(m_u - m_d) + \dots$$

$$m_{K^+}^2 = B_0(m_u + m_s)$$

$$\epsilon \sim 0.015$$

$$m_{K^0}^2 = B_0(m_d + m_s)$$

$$m_{\eta}^2 = B_0\frac{m_u + m_d + 4m_s}{3} - \frac{2\epsilon}{\sqrt{3}}B_0(m_u - m_d) + \dots$$

$$m_{\pi^+}^2 = B_0(m_u + m_d) + \Delta_{em}^{\pi} + \dots$$

$$m_{\pi^0}^2 = B_0(m_u + m_d) + \frac{2\epsilon}{\sqrt{3}}B_0(m_u - m_d) + \dots$$

$$m_{K^+}^2 = B_0(m_u + m_s) + \Delta_{em}^{K} + \dots \qquad \Delta_{em}^{\pi/K} \sim (35 \text{ MeV})^2$$

$$m_{K^0}^2 = B_0(m_d + m_s) \qquad \Delta_{em}^{\pi} = \Delta_{em}^{K}$$

$$m_{\eta}^2 = B_0 \frac{m_u + m_d + 4m_s}{3} - \frac{2\epsilon}{\sqrt{3}}B_0(m_u - m_d) + \dots$$

•

$$m_{\pi^+}^2 = B_0(m_u + m_d) + \Delta_{em}^{\pi} + \dots$$

$$m_{\pi^0}^2 = B_0(m_u + m_d) + \frac{2\epsilon}{\sqrt{3}}B_0(m_u - m_d) + \dots$$

$$m_{K^+}^2 = B_0(m_u + m_s) + \Delta_{em}^{K} + \dots$$

$$m_{K^0}^2 = B_0(m_d + m_s)$$

$$m_{\eta}^2 = B_0 \frac{m_u + m_d + 4m_s}{3} - \frac{2\epsilon}{\sqrt{3}}B_0(m_u - m_d) + \dots$$

$$\Rightarrow (m_u - m_d) \text{ well hidden}$$

Quark masses from the lattice

more on this from others

[talks by Bernard, Lellouch, Sachrajda, Izubuchi, . . .]

- relations between meson masses and quark masses from QCD
- **m_u m_d** needs handle on e.m. effects
 - input from phenomenology (e.g., Kaon mass difference)
 - put photons on the lattice
- recent review from FLAG

[Colangelo et al. '11]

What has $\eta \rightarrow 3\pi$ to do with quark masses?

• $\eta \rightarrow 3\pi$ depends on m_q in special way:

violates isospin

generated by
$$\mathscr{L}_{lB} = -\frac{m_u - m_d}{2}(\bar{u}u - \bar{d}d)$$

 $\Delta I = 1 \text{ operator}$

What has $\eta \rightarrow 3\pi$ to do with quark masses?

• $\eta \rightarrow 3\pi$ depends on m_q in special way:

violates isospin

generated by
$$\mathscr{L}_{lB} = -\frac{m_u - m_d}{2}(\bar{u}u - \bar{d}d)$$

 $\Delta I = 1 \text{ operator}$

- ⇒ decay amplitude proportional to $(m_u m_d)$
- $\blacksquare \Rightarrow$ measure for strength of isospin breaking in QCD

Electromagnetic corrections

- **Q**_{*u*} \neq **Q**_{*d*} \Rightarrow e.m. interactions break isospin
- \blacksquare \Rightarrow can contribute to η \rightarrow 3π

Electromagnetic corrections

- **Q**_{*u*} \neq **Q**_{*d*} \Rightarrow e.m. interactions break isospin
- \blacksquare \Rightarrow can contribute to $\eta \rightarrow 3\pi$
- but: contribution very small

[Sutherland '66, Bell & Sutherland '68]

- one-loop contributions known and small [Baur, Kambor, Wyler '96, Ditsche, Kubis, Meißner '09]
- recent claim that $\eta \rightarrow 3\pi^0$ is mainly e.m. based on incomplete 2-loop calculation [Nehme, Zein '11]

Electromagnetic corrections

- $\blacksquare \ Q_u \neq Q_d \Rightarrow e.m. \text{ interactions break isospin}$
- $\blacksquare \Rightarrow can contribute to \eta \rightarrow 3\pi$
- but: contribution very small

[Sutherland '66, Bell & Sutherland '68]

- one-loop contributions known and small [Baur, Kambor, Wyler '96, Ditsche, Kubis, Meißner '09]
- recent claim that $\eta \rightarrow 3\pi^0$ is mainly e.m. based on incomplete 2-loop calculation [Nehme, Zein '11]
- ⇒ clean access to $(m_u m_d)$

 $\blacksquare \mathcal{A}_{\eta \to 3\pi} \propto \mathcal{B}_0(m_u - m_d)$

$$\blacksquare \ \mathcal{A}_{\eta \to 3\pi} \propto \mathcal{B}_0(m_u - m_d) = \begin{cases} \frac{1}{Q^2} \frac{m_K^2(m_K^2 - m_\pi^2)}{m_\pi^2} + \mathcal{O}(\mathcal{M}^3) \\ -\frac{1}{R}(m_K^2 - m_\pi^2) + \mathcal{O}(\mathcal{M}^2) \end{cases}$$

$$Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}}$$
$$R = \frac{m_{s} - \hat{m}}{m_{d} - m_{u}}$$

$$\blacksquare \ \mathcal{A}_{\eta \to 3\pi} \propto \mathcal{B}_0(m_u - m_d) = \begin{cases} \frac{1}{Q^2} \frac{m_K^2(m_K^2 - m_\pi^2)}{m_\pi^2} + \mathcal{O}(\mathcal{M}^3) \\ \\ -\frac{1}{R}(m_K^2 - m_\pi^2) + \mathcal{O}(\mathcal{M}^2) \end{cases}$$

$$Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}}$$
$$R = \frac{m_{s} - \hat{m}}{m_{d} - m_{u}}$$

define normalised amplitude: $\mathcal{A}(s, t, u) = -\frac{1}{Q^2} \frac{m_K^2(m_K^2 - m_\pi^2)}{2\sqrt{3}m_\pi^2 F_\pi^2} \mathcal{M}(s, t, u)$

$$\blacksquare$$
 $\Gamma_{exp} \propto \int |\mathcal{A}(s,t,u)| \propto 1/Q^4$

■ slow convergence of chiral series:

$$\Gamma_{c} = 66 \text{ eV} + 94 \text{ eV} + \dots = 296 \text{ eV}$$

$$\int_{c}^{1} Current algebra \qquad one-loop \chi PT$$
Cronin '67, Osborn & Wallace '70]
$$Gasser \& Leutwyler '84]$$

■ slow convergence of chiral series:

$$\Gamma_{c} = 66 \text{ eV} + 94 \text{ eV} + \dots = 296 \text{ eV}$$

$$\int_{current algebra}^{current algebra} \text{ one-loop } \chi \text{PT}$$

$$\int_{current algebra}^{current algebra} \left[\text{Gasser \& Leutwyler '84} \right]$$

 \blacksquare \Rightarrow enhanced by large final state rescattering effects

[Roiesnel & Truong '81]

possible tension among charged and neutral channel experiments

possible tension among charged and neutral channel experiments

charged and neutral channel amplitudes are related:

 $\mathcal{A}_n(s, t, u) = \mathcal{A}_c(s, t, u) + \mathcal{A}_c(t, u, s) + \mathcal{A}_c(u, s, t)$

 \blacksquare \Rightarrow allows for consistency check among measurements

more on this later...

Kinematics

Kinematics

$$s = (p_{\pi^+} + p_{\pi^-})^2$$
 $t = (p_{\pi^0} + p_{\pi^-})^2$
 $u = (p_{\pi^0} + p_{\pi^+})^2$
 $s + t + u = m_{\eta}^2 + 2m_{\pi^+}^2 + m_{\pi^0}^2 \equiv 3s_0$
 \Rightarrow only two independent variables ,

e.g., s & $t - u \propto \cos \theta_{S}$

Adler Zero

■ soft pion theorem, i.e., valid in SU(2) chiral limit

decay amplitude has a zero if

$$\blacksquare \ p_{\pi^+} \to 0 \quad \Leftrightarrow \quad s = u = 0, \ t = m_{\eta}^2$$

$$\blacksquare \ p_{\pi^-} \to 0 \quad \Leftrightarrow \quad s = t = 0, \ u = m_\eta^2$$

[Adler '65]

Adler Zero

■ soft pion theorem, i.e., valid in SU(2) chiral limit

decay amplitude has a zero if

$$\blacksquare p_{\pi^+} \to 0 \quad \Leftrightarrow \quad s = u = 0, \ t = m_\eta^2$$

$$\blacksquare \ p_{\pi^-} \to 0 \quad \Leftrightarrow \quad s = t = 0, \ u = m_\eta^2$$

for $m_{\pi} \neq 0$ Adler zeros at

s
$$s = u = \frac{4}{3}m_{\pi}^2, t = m_{\eta}^2 + m_{\pi}^2/3$$

s $s = t = \frac{4}{3}m_{\pi}^2, u = m_{\eta}^2 + m_{\pi}^2/3$

• protected by SU(2) chiral symmetry \Rightarrow no $\mathcal{O}(m_s)$ corrections

[Adler '65]

Outline

1 Introduction

2 Dalitz plot measurements

3 Theoretical work

4 Our dispersive analysis

5 Comparison of results

Dalitz plot variables

$$X = \frac{\sqrt{3}}{2m_{\eta}Q_{c}}(u-t)$$

$$Y = \frac{3}{2m_{\eta}Q_{c}}((m_{\eta}-m_{\pi^{0}})^{2}-s)-1$$

$$Q_{c} = m_{\eta}-2m_{\pi^{+}}-m_{\pi^{0}}$$

$$Z = X^{2}+Y^{2}$$

KLOE measurement of the charged channel

only modern high-statistics Dalitz plot measurement

[KLOE '08]

 $\blacksquare \sim 1.3 \times 10^6 \ \eta \rightarrow \pi^+ \pi^- \pi^0$ events from $e^+ e^- \rightarrow \phi \rightarrow \eta \gamma$

[Figure from Ambrosino et al. '08]

KLOE result for Dalitz plot parameters

Dalitz plot parametrisation:

 $|\mathcal{A}_c(s,t,u)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^3 + hX^2Y + IXY^2$

KLOE result for Dalitz plot parameters

Dalitz plot parametrisation:

 $|\mathcal{A}_{c}(s,t,u)|^{2} \propto 1 + aY + bY^{2} + cX + dX^{2} + eXY + fY^{3} + gX^{3} + hX^{2}Y + IXY^{2}$

■ charge conjugation \Rightarrow s ymmetry under $X \leftrightarrow -X$
Dalitz plot parametrisation:

 $|\mathcal{A}_{c}(s,t,u)|^{2} \propto 1 + aY + bY^{2} + cX + dX^{2} + eXY + fY^{3} + gX^{3} + hX^{2}Y + IXY^{2}$

• charge conjugation \Rightarrow s ymmetry under $X \leftrightarrow -X$

h consistent with zero

Dalitz plot parametrisation:

 $|\mathcal{A}_{c}(s,t,u)|^{2} \propto 1 + aY + bY^{2} + cX + dX^{2} + eXY + fY^{3} + gX^{3} + hX^{2}Y + IXY^{2}$

• charge conjugation \Rightarrow s ymmetry under $X \leftrightarrow -X$

h consistent with zero

result:

[KLOE '08]

$$a = -1.090^{+0.009}_{-0.020}$$
 $b = 0.124 \pm 0.012$
 $d = 0.057^{+0.009}_{-0.017}$ $f = 0.14 \pm 0.02$

Dalitz plot parametrisation:

 $|\mathcal{A}_{c}(s,t,u)|^{2} \propto 1 + aY + bY^{2} + cX + dX^{2} + eXY + fY^{3} + gX^{3} + hX^{2}Y + IXY^{2}$

• charge conjugation \Rightarrow s ymmetry under $X \leftrightarrow -X$

h consistent with zero

result:

[KLOE '08]

$$a = -1.090^{+0.009}_{-0.020}$$
 $b = 0.124 \pm 0.012$
 $d = 0.057^{+0.009}_{-0.017}$ $f = 0.14 \pm 0.02$

MAMI-C measurement of the neutral channel

•
$$\sim 3 \times 10^6 \ \eta
ightarrow 3\pi^0$$
 events from $\gamma p
ightarrow \eta p$

- smallest uncertainties on α
- similar but independent measurement from MAMI-B

[figure from Prakhov et al. '09]

$$\blacksquare |\mathcal{A}_n(s,t,u)|^2 \propto 1 + 2\alpha Z + 6\beta Y\left(X^2 - \frac{Y^2}{3}\right) + 2\gamma Z^2$$

MAMI-C measurement of the neutral channel

- $\sim 3 \times 10^6 \ \eta \rightarrow 3\pi^0$ events from $\gamma p \rightarrow \eta p$
- smallest uncertainties on α
- similar but independent measurement from MAMI-B

[figure from Prakhov et al. '09]

$$|\mathcal{A}_n(s,t,u)|^2 \propto 1 + 2\alpha Z + 6\beta Y \left(X^2 - \frac{Y^2}{3}\right) + 2\gamma Z^2$$

.

Outline

1 Introduction

2 Dalitz plot measurements

3 Theoretical work

4 Our dispersive analysis

5 Comparison of results

What has been done?

	Q	lpha	tension	
e.m. contributions in χPT	\checkmark	\checkmark	×	[Baur et al., '96, Ditsche et al. '09]
two-loop χPT	\checkmark	\checkmark	×	[Bijnens & Ghorbani '07]
non-relativistic EFT	×	\checkmark	\checkmark	[Schneider, Kubis & Ditsche '11]
analytical dispersive	\checkmark	\checkmark	(√)	[Kampf, Knecht, Novotný & Zdráhal '11]
resummed χPT	×	(√)	(√)	[Kolesar et al. '11]
numerical dispersive	\checkmark	\checkmark	\checkmark	[Colangelo, SL, Leutwyler, Passemar tbp]

	Q	lpha	tension	
non-relativistic EFT	×	\checkmark	\checkmark	[Schneider, Kubis & Ditsche '11]

expansion in small π three momenta in η rest frame

explicitly includes two pion rescattering processes

inputs:

- $\blacksquare \mathcal{O}(p^4) \eta \to 3\pi \text{ amplitude from } \chi \mathsf{PT}$
- empirical $\pi\pi$ scattering phases
- results only for shape, but not normalisation

	Q	lpha	tension	
non-relativistic EFT	X	\checkmark	\checkmark	[Schneider, Kubis & Ditsche '11]

 $\alpha = -0.025 \pm 0.005 \Rightarrow$ correct sign, marginal agreement with experiment

■ tension between charged and neutral channel experiments:

$$lpha \leq rac{1}{4}(b+d-rac{1}{4}a^2)$$
 [Bijnens & Ghorbani '07]

	Q	lpha	tension	
non-relativistic EFT	×	\checkmark	\checkmark	[Schneider, Kubis & Ditsche '11]

 $\alpha = -0.025 \pm 0.005 \Rightarrow$ correct sign, marginal agreement with experiment

■ tension between charged and neutral channel experiments:

$$\alpha = \frac{1}{4}(b + d - \frac{1}{4}a^2) + \Delta$$

■ △ can be calculated in NREFT (no $\eta \rightarrow 3\pi$ input from χ PT needed!)

	Q	lpha	tension	
non-relativistic EFT	×	\checkmark	\checkmark	[Schneider, Kubis & Ditsche '11]

 $\alpha = -0.025 \pm 0.005 \Rightarrow$ correct sign, marginal agreement with experiment

tension between charged and neutral channel experiments:

$$\alpha = \frac{1}{4}(b+d-\frac{1}{4}a^2)$$

■ Δ can be calculated in NREFT (no $\eta \rightarrow 3\pi$ input from χ PT needed!)

from KLOE Dalitz plot parameters: $\alpha = -0.059 \pm 0.007$

• main reason for disagreement: $b_{NREFT} = 0.308 > b_{KLOE} = 0.124$

Stefan Lanz (Lund University)

Dispersive analysis by Kampf et al.

	Q	lpha	tension	
analytical dispersive	\checkmark	\checkmark	(√)	[Kampf, Knecht, Novotný & Zdráhal '11]

a analytical dispersive analysis relying on two-loop χ PT and KLOE data

6 subtraction constants

• two rescattering processes \Rightarrow reproduces two-loop result

Dispersive analysis by Kampf et al.

	Q	lpha	tension	
analytical dispersive	\checkmark	\checkmark	(√)	[Kampf, Knecht, Novotný & Zdráhal '11]

- analytical dispersive analysis relying on two-loop χ PT and KLOE data
- 6 subtraction constants
- two rescattering processes \Rightarrow reproduces two-loop result
- main result: subtraction constants from fit to KLOE data (normalisation fixed by imaginary part of two-loop result along t = u)

Dispersive analysis by Kampf et al.

	Q	lpha	tension	
analytical dispersive	\checkmark	\checkmark	(√)	[Kampf, Knecht, Novotný & Zdráhal '11]
■ Adler zero strongly violated ⇒ incompatible with SU(2) chiral symmetry	$M(s, 3s_0-2s, s)$	2.5 2.0 1.5 1.0 0.5 0.0	one-k KKNZ	pop χ PT dispersive 4 6 8 10 $s = u \text{ in } m_{\pi}^2$

Outline

1 Introduction

- 2 Dalitz plot measurements
- 3 Theoretical work
- 4 Our dispersive analysis
- 5 Comparison of results

Method

	Q	α	tension	
numerical dispersive	\checkmark	\checkmark	\checkmark	[Colangelo, SL, Leutwyler, Passemar tbp]

■ includes arbitrary number of rescattering processes

Method

	Q	${lpha}$	tension	
numerical dispersive	\checkmark	\checkmark	\checkmark	[Colangelo, SL, Leutwyler, Passemar tbp]

includes arbitrary number of rescattering processes

two main steps:

- derive & solve dispersion relations
- fix subtraction constants

[Anisovich & Leutwyler '96]

relies on decomposition

[Fuchs, Sazdijan & Stern '93, Anisovich & Leutwyler '96]

 $\mathcal{M}(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$

relies on decomposition

[Fuchs, Sazdijan & Stern '93, Anisovich & Leutwyler '96]

 $\mathcal{M}(s, t, u) = M_0(s) + (s - u)M_1(t) + (s - t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$

dispersion relation for each $M_l(s)$:

[Anisovich & Leutwyler '96]

$$M_{l}(s) = \Omega_{l}(s) \left\{ P_{l}(s) + \frac{s^{n_{l}}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n_{l}}} \frac{\sin \delta_{l}(s') \hat{M}_{l}(s')}{|\Omega_{l}(s')|(s'-s-i\epsilon)} \right\}$$

Omnès function: $\Omega_{l}(s) = \exp \left\{ \frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\delta_{l}(s')}{s'(s'-s-i\epsilon)} \right\}$

[Omnès '58]

relies on decomposition

[Fuchs, Sazdijan & Stern '93, Anisovich & Leutwyler '96]

 $\mathcal{M}(s, t, u) = M_0(s) + (s - u)M_1(t) + (s - t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$

dispersion relation for each $M_l(s)$:

[Anisovich & Leutwyler '96]

$$M_{l}(\mathbf{s}) = \Omega_{l}(\mathbf{s}) \left\{ P_{l}(\mathbf{s}) + \frac{\mathbf{s}^{n_{l}}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{d\mathbf{s}'}{\mathbf{s}'^{n_{l}}} \frac{\sin \delta_{l}(\mathbf{s}') \hat{M}_{l}(\mathbf{s}')}{|\Omega_{l}(\mathbf{s}')|(\mathbf{s}'-\mathbf{s}-i\epsilon)} \right\}$$

$$= \text{Omnès function: } \Omega_{l}(\mathbf{s}) = \exp \left\{ \frac{\mathbf{s}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} d\mathbf{s}' \frac{\delta_{l}(\mathbf{s}')}{\mathbf{s}'(\mathbf{s}'-\mathbf{s}-i\epsilon)} \right\}$$

$$[Omnès '58]$$

input needed for

 \blacksquare $\pi\pi$ phase shifts

[Ananthanarayan, Colangelo, Gasser & Leutwyler '01]

subtraction constants

Stefan Lanz (Lund University)

relies on decomposition

[Fuchs, Sazdijan & Stern '93, Anisovich & Leutwyler '96]

 $\mathcal{M}(s, t, u) = M_0(s) + (s - u)M_1(t) + (s - t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$

dispersion relation for each $M_l(s)$:

[Anisovich & Leutwyler '96]

$$M_{l}(s) = \Omega_{l}(s) \left\{ \frac{P_{l}(s) + \frac{s^{n_{l}}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n_{l}}} \frac{\sin \delta_{l}(s') \hat{M}_{l}(s')}{|\Omega_{l}(s')|(s'-s-i\epsilon)} \right\}$$

I Omnès function: $\Omega_{l}(s) = \exp \left\{ \frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\delta_{l}(s')}{s'(s'-s-i\epsilon)} \right\}$ [Omnès '58]

input needed for

 \blacksquare $\pi\pi$ phase shifts

[Ananthanarayan, Colangelo, Gasser & Leutwyler '01]

subtraction constants

Stefan Lanz (Lund University)

Taylor coefficients

$$\blacksquare M_{l}(s) = a_{l} + b_{l}s + c_{l}s^{2} + d_{l}s^{3} + \dots$$

■ Taylor coefficients ⇔ subtraction constants

Taylor coefficients

$$\blacksquare M_{l}(s) = a_{l} + b_{l}s + c_{l}s^{2} + d_{l}s^{3} + \dots$$

- Taylor coefficients ⇔ subtraction constants
- \blacksquare $a_I, b_I, \ldots \in \mathbb{R}$, but $\alpha_I, \beta_I, \ldots \in \mathbb{C}$
- imaginary parts of subtraction constants suppressed
- splitting into $M_l(s)$ not unique because of $s + t + u = m_\eta^2 + 2m_{\pi^+}^2 + m_{\pi^0}^2$
 - \Rightarrow gauge freedom to fix some Taylor coefficients arbitrarily

Subtraction constants from theory alone:

$$M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \dots$$

$$\blacksquare M_1(s) = a_1 + b_1 s + c_1 s^2 + \dots$$

$$\blacksquare M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \dots$$

■ use only TC up to s²

Subtraction constants from theory alone:

 $\blacksquare M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \dots$

$$\blacksquare M_1(s) = a_1 + b_1 s + c_1 s^2 + \dots$$

$$\blacksquare M_2(s) = \frac{a_2}{b_2} + \frac{b_2s}{s_1} + \frac{c_2s_2}{c_2s_2} + \frac{c_$$

use only TC up to s²

■ gauge 4 TC to tree level value

Subtraction constants from theory alone:

 $\blacksquare M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \dots$

$$\blacksquare M_1(s) = a_1 + b_1 s + c_1 s^2 + \dots$$

$$\blacksquare M_2(s) = \frac{a_2}{b_2} + \frac{b_2s}{s_1} + \frac{c_2s^2}{c_2s_1} + \frac{c_2s_2}{c_2s_2} + \frac{c_$$

use only TC up to s²

- gauge 4 TC to tree level value
- set 4 TC to one-loop value

Subtraction constants from theory alone:

 $\blacksquare M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \dots$

$$\blacksquare M_1(s) = a_1 + b_1 s + c_1 s^2 + \dots$$

$$M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \dots$$

use only TC up to s²

- gauge 4 TC to tree level value
- set 4 TC to one-loop value
- \blacksquare \Rightarrow dispersive, one loop

Subtraction constants from theory alone:

$$M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \dots$$

$$\blacksquare M_1(s) = a_1 + b_1 s + c_1 s^2 + \dots$$

$$M_2(s) = a_2 + b_2 s + c_2 s^2 + d_2 s^3 + \dots$$

\blacksquare \Rightarrow dispersive, one loop

- $\blacksquare M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \dots$
- $\blacksquare M_1(s) = a_1 + b_1 s + c_1 s^2 + \dots$
- $\blacksquare M_2(s) = \frac{a_2}{b_2} + \frac{b_2}{s} + \frac{c_2}{s^2} + \frac{d_2}{s^3} + \dots$
- gauge 4 TC to tree level value
- set 4 TC to one-loop value

- $\blacksquare M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \dots$
- $\blacksquare M_1(s) = a_1 + b_1 s + c_1 s^2 + \dots$
- $\blacksquare M_2(s) = \frac{a_2}{b_2} + \frac{b_2}{s} + \frac{c_2}{s^2} + \frac{d_2}{s^3} + \dots$
- gauge 4 TC to tree level value
- set 4 TC to one-loop value
- fix 2 TC from fit to data

- $\blacksquare M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \dots$
- $\blacksquare M_1(s) = a_1 + b_1 s + c_1 s^2 + \dots$
- $\blacksquare M_2(s) = \frac{a_2}{b_2} + \frac{b_2s}{s_1} + \frac{c_2s^2}{c_2s_1} + \frac{c_2s^3}{c_2s_1} + \dots$
- gauge 4 TC to tree level value
- set 4 TC to one-loop value
- fix 2 TC from fit to data
- **gauge 1 TC such that** $\delta_2 = 0$

- $\blacksquare M_0(s) = a_0 + b_0 s + c_0 s^2 + d_0 s^3 + \dots$
- $\blacksquare M_1(s) = a_1 + b_1 s + c_1 s^2 + \dots$
- $\blacksquare M_2(s) = \frac{a_2}{b_2} + \frac{b_2s}{s_1} + \frac{c_2s^2}{c_2s_1} + \frac{c_2s^3}{c_2s_1} + \dots$
- gauge 4 TC to tree level value
- set 4 TC to one-loop value
- fix 2 TC from fit to data
- **gauge 1 TC such that** $\delta_2 = 0$
- $\blacksquare \Rightarrow \text{dispersive, fit to KLOE}$

Dalitz distribution for $\eta \to \pi^+ \pi^- \pi^0$

Dalitz distribution for $\eta \to \pi^+ \pi^- \pi^0$

Dalitz distribution for $\eta \to \pi^+ \pi^- \pi^0$

Results

Dalitz distribution for $\eta \rightarrow 3\pi^0$

Dalitz distribution for $\eta \rightarrow 3\pi^0$

Results

Dalitz distribution for $\eta \rightarrow 3\pi^0$

But: electromagnetic corrections

dispersive amplitude in isospin limit \Rightarrow needs to be accounted for in fits:

- Dalitz plot distribution: kinematic effects most important (position of cusps)
- decay rate: kinematic effects not enough (size of phase space)

But: electromagnetic corrections

dispersive amplitude in isospin limit \Rightarrow needs to be accounted for in fits:

- Dalitz plot distribution: kinematic effects most important (position of cusps)
- decay rate: kinematic effects not enough (size of phase space)
- small effect on Q, but branching ratio is off
- roughly estimate e.m. effects on F

 - \Rightarrow e.m. corrections can amend BR

[Gullström et al. '09, Ditsche et al. '09]

But: electromagnetic corrections

dispersive amplitude in isospin limit \Rightarrow needs to be accounted for in fits:

- Dalitz plot distribution: kinematic effects most important (position of cusps)
- decay rate: kinematic effects not enough (size of phase space)
- small effect on Q, but branching ratio is off
- roughly estimate e.m. effects on F
 - \Rightarrow e.m. corrections can amend BR
- needs to be improved

[Gullström et al. '09, Ditsche et al. '09]

Outline

1 Introduction

- 2 Dalitz plot measurements
- 3 Theoretical work
- 4 Our dispersive analysis

5 Comparison of results

Comparison of Q

Comparison of Q

Comparison of α

Comparison of α

Stefan Lanz (Lund University)

Conclusion & Outlook

- $\eta \rightarrow 3\pi$ very well suited to gain information on isospin breaking in QCD
- dispersion relations allow to treat rescattering effects properly
- dispersive treatment significantly improves one-loop result
- neutral channel slope parameter can be understood based on charged channel data
- no clear sign of a tension among experiments
- more careful treatment of electromagnetic effects needed