Analyticity and unitarity constraints on form factors

Irinel Caprini

IFIN-HH, Bucharest, Romania

Based on papers with G. Abbas, B. Ananthanarayan, C. Bourrely,

L. Lellouch, I. Sentitemsu Imsong, S. Ramanan

1 Analyticity and unitarity for form factors

2 Method of "unitarity bounds" Okubo (1971)

3 Meiman problem and generalizations

4 Applications

6 Conclusions

Form factors considered

Electromagnetic form factors of light pseudoscalar mesons: $P = \pi, K$

•
$$\langle P^+(p')|J_{\mu}^{\text{elm}}|P^+(p)\rangle = (p+p')_{\mu}F_P(t)$$

Form factors relevant for weak semileptonic transitions: $P \rightarrow \pi$, P = K, D, B

•
$$\langle \pi^+(p')|J_{\mu}^{\mathrm{weak}}|P^0(p)\rangle = (p'+p)_{\mu}f_+(t) + (p-p')_{\mu}f_-(t)$$

• $f_+(t)$: vector form factor

•
$$f_0(t) = f_+(t) + \frac{t}{M_P^2 - M_\pi^2} f_-(t)$$
: scalar form factor

In the general discussion $F_P(t)$ and $f_{\pm}(t)$ shall be denoted generically as F(t)

Theoretical description of F(t)

- at low energies: ChPT, lattice, QCD-SR
- at high $t = -Q^2 < 0$ perturbative QCD (1/t scaling)
- intermediate region: big uncertainties

Theoretical description of F(t)

- at low energies: ChPT, lattice, QCD-SR
- at high $t = -Q^2 < 0$ perturbative QCD (1/t scaling)
- intermediate region: big uncertainties

Theoretical description of F(t)

- at low energies: ChPT, lattice, QCD-SR
- at high $t = -Q^2 < 0$ perturbative QCD (1/t scaling)
- intermediate region: big uncertainties

Analyticity and unitarity

Causality: F(t) real analytic function, F(t*) = F*(t), in the complex t-plane with a cut along the real axis from the lowest unitarity threshold t₊ to infinity

• Unitarity:
$$\text{Im}F(t+i\epsilon) = \theta(t-t_+)\sigma(t)f^*(t)F(t) + \theta(t-t_{in})\Sigma_{in}(t)$$

 $\sigma(t)=\sqrt{1-t_+/t}$: two particle phase space

 \Rightarrow Fermi-Watson theorem: for $t_+ \leq t \leq t_{in}$, $\arg[F(t+i\epsilon)] = \delta(t)$,

 $\delta(t)$: phase-shift of the related scattering amplitude $f(t) = \frac{e^{2i\delta(t)}-1}{2i\sigma(t)}$

• Complications: unphysical regions, anomalous thresholds (not encountered)

• Dispersive representations

- Dispersive representations
 - Standard dispersion relation (Cauchy integral)

$$\begin{split} F(t) &= \frac{1}{\pi} \int_{t_+}^{\infty} \frac{\mathrm{Im} F(t' + i\epsilon) dt'}{t' - t} \quad (\text{modulo subtractions}) \\ \mathrm{Im} \, F(t + i\epsilon) &= \sigma(t) f^*(t) F(t) \quad \text{for } t < t_{in} \end{split}$$

- Dispersive representations
 - Standard dispersion relation (Cauchy integral)

$$\begin{split} F(t) &= \frac{1}{\pi} \int_{t_+}^{\infty} \frac{\mathrm{Im} F(t' + i\epsilon) dt'}{t' - t} \quad (\text{modulo subtractions}) \\ \mathrm{Im} \, F(t + i\epsilon) &= \sigma(t) f^*(t) F(t) \quad \text{for } t < t_{in} \end{split}$$

• Omnès (phase) representations

$$F(t) = P(t) \exp\left(\frac{t}{\pi} \int_{t+}^{\infty} dt' \frac{\delta(t')}{t'(t'-t)}\right)$$

P(t): real polynomial (accounts for zeros: $P(t_i) = 0$)

- Dispersive representations
 - Standard dispersion relation (Cauchy integral)

$$\begin{split} F(t) &= \frac{1}{\pi} \int_{t_+}^{\infty} \frac{\mathrm{Im} F(t' + i\epsilon) dt'}{t' - t} \quad (\text{modulo subtractions}) \\ \mathrm{Im} F(t + i\epsilon) &= \sigma(t) f^*(t) F(t) \quad \text{for } t < t_{in} \end{split}$$

• Omnès (phase) representations

$$F(t) = P(t) \exp\left(\frac{t}{\pi} \int_{t+}^{\infty} dt' \frac{\delta(t')}{t'(t'-t)}\right)$$

P(t): real polynomial (accounts for zeros: $P(t_i) = 0$)

· Representation in terms of modulus

$$\begin{aligned} F(t) &= B(t) \exp\left(\frac{\sqrt{t_{+}-t}}{\pi} \int_{t_{+}}^{\infty} \frac{\ln |F(t')| \, \mathrm{d}t'}{\sqrt{t'-t_{+}(t'-t)}}\right) \\ B(t): \text{ Blaschke factor } (|B(t)| = 1 \text{ for } t > t_{+}, B(t_{i}) = 0) \end{aligned}$$

- Dispersive representations
 - Standard dispersion relation (Cauchy integral)

$$\begin{split} F(t) &= \frac{1}{\pi} \int_{t_+}^{\infty} \frac{\mathrm{Im} F(t' + i\epsilon) dt'}{t' - t} \quad (\text{modulo subtractions}) \\ \mathrm{Im} F(t + i\epsilon) &= \sigma(t) f^*(t) F(t) \quad \text{for } t < t_{in} \end{split}$$

• Omnès (phase) representations

$$F(t) = P(t) \exp\left(\frac{t}{\pi} \int_{t+}^{\infty} dt' \frac{\delta(t')}{t'(t'-t)}\right)$$

P(t): real polynomial (accounts for zeros: $P(t_i) = 0$)

Representation in terms of modulus

$$\begin{aligned} F(t) &= B(t) \exp\left(\frac{\sqrt{t_{+}-t}}{\pi} \int_{t_{+}}^{\infty} \frac{\ln |F(t')| \, \mathrm{d}t'}{\sqrt{t'-t_{+}(t'-t)}}\right) \\ B(t): \text{ Blaschke factor } (|B(t)| = 1 \text{ for } t > t_{+}, B(t_{i}) = 0) \end{aligned}$$

Analytic parametrizations - little predictive power outside their original range

"Method of unitarity bounds" Okubo (1971), Micu (1973), Auberson et al (1975), Singh and Raina (1979)

- Polarization tensor of the relevant current calculated from current algebra at spacelike momenta
- Dispersion relation for the invariant polarization amplitudes
- Unitarity and positivity of the spectral functions

 \Rightarrow an upper bound on an integral of the modulus squared of the form factor along the unitarity cut

 \Rightarrow mathematical techniques of complex analysis lead to bounds on the values of the form factor and its derivatives at points inside the analyticity domain

"Method of unitarity bounds" Okubo (1971), Micu (1973), Auberson et al (1975), Singh and Raina (1979)

- Polarization tensor of the relevant current calculated from current algebra at spacelike momenta
- Dispersion relation for the invariant polarization amplitudes
- Unitarity and positivity of the spectral functions

 \Rightarrow an upper bound on an integral of the modulus squared of the form factor along the unitarity cut

 \Rightarrow mathematical techniques of complex analysis lead to bounds on the values of the form factor and its derivatives at points inside the analyticity domain

 Modern version: the spacelike correlators are obtained from perturbative QCD and OPE Bourrely, Machet, de Rafael (1981), de Rafael and Taron (1992)

Illustration

Polarization tensor of a relevant weak current V_µ:

$$i\int d^{4}x \, e^{iq\cdot x} \langle 0|T\left\{V^{\mu}(x)V^{\nu}(0)^{\dagger}\right\}|0\rangle = (-g^{\mu\nu}q^{2} + q^{\mu}q^{\nu})\Pi_{1}(q^{2}) + q^{\mu}q^{\nu}\Pi_{0}(q^{2})$$

Unsubtracted dispersion relations for suitable correlators

$$\begin{split} \chi_{1}(Q^{2}) &\equiv -\frac{1}{2} \frac{\partial^{2}}{\partial (Q^{2})^{2}} \left[Q^{2} \Pi_{1}(-Q^{2}) \right] = \frac{1}{\pi} \int_{0}^{\infty} dt \, \frac{t \mathrm{Im} \Pi_{1}(t)}{(t+Q^{2})^{3}} \\ \chi_{0}(Q^{2}) &\equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2} \Pi_{0}(-Q^{2}) \right] = \frac{1}{\pi} \int_{0}^{\infty} dt \, \frac{t \mathrm{Im} \Pi_{0}(t)}{(t+Q^{2})^{2}} \end{split}$$

• Unitarity and the positivity of the spectral functions $(t_{\pm}=(M_{P}\pm M_{\pi})^{2})$

$$\begin{split} \operatorname{Im}\Pi_{1}(t) &\geq \frac{3}{2} \frac{1}{48\pi} \frac{\left[(t-t_{+})(t-t_{-}) \right]^{3/2}}{t^{3}} |f_{+}(t)|^{2} \\ \operatorname{Im}\Pi_{0}(t) &\geq \frac{3}{2} \frac{t_{+}t_{-}}{16\pi} \frac{\left[(t-t_{+})(t-t_{-}) \right]^{1/2}}{t^{3}} |f_{0}(t)|^{2} \end{split}$$

 $\Rightarrow \qquad \frac{1}{\pi} \int_{t_+}^{\infty} \rho(\mathbf{t}, \mathbf{Q}^2) |\mathbf{F}(\mathbf{t})|^2 d\mathbf{t} \le \mathbf{I}(\mathbf{Q}^2), \quad I(Q^2) \text{ calculated from pQCD and OPE}$

Illustration

Polarization tensor of a relevant weak current V_µ:

$$i\int d^{4}x \, e^{iq \cdot x} \langle 0|T\left\{V^{\mu}(x)V^{\nu}(0)^{\dagger}\right\}|0\rangle = (-g^{\mu\nu}q^{2} + q^{\mu}q^{\nu})\Pi_{1}(q^{2}) + q^{\mu}q^{\nu}\Pi_{0}(q^{2})$$

Unsubtracted dispersion relations for suitable correlators

$$\chi_{1}(Q^{2}) \equiv -\frac{1}{2} \frac{\partial^{2}}{\partial(Q^{2})^{2}} \left[Q^{2} \Pi_{1}(-Q^{2}) \right] = \frac{1}{\pi} \int_{0}^{\infty} dt \, \frac{t \mathrm{Im} \Pi_{1}(t)}{(t+Q^{2})^{2}}$$
$$\chi_{0}(Q^{2}) \equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2} \Pi_{0}(-Q^{2}) \right] = \frac{1}{\pi} \int_{0}^{\infty} dt \, \frac{t \mathrm{Im} \Pi_{0}(t)}{(t+Q^{2})^{2}}$$

• Unitarity and the positivity of the spectral functions $(t_{\pm}=(M_{P}\pm M_{\pi})^{2})$

$$\begin{split} \operatorname{Im}\Pi_{1}(t) &\geq \frac{3}{2} \frac{1}{48\pi} \frac{\left[(t-t_{+})(t-t_{-}) \right]^{3/2}}{t^{3}} |f_{+}(t)|^{2} \\ \operatorname{Im}\Pi_{0}(t) &\geq \frac{3}{2} \frac{t_{+}t_{-}}{16\pi} \frac{\left[(t-t_{+})(t-t_{-}) \right]^{1/2}}{t^{3}} |f_{0}(t)|^{2} \end{split}$$

 $\Rightarrow \qquad \frac{1}{\pi} \int_{t_+}^{\infty} \rho(t, \mathbf{Q}^2) |\mathbf{F}(t)|^2 dt \le \mathbf{I}(\mathbf{Q}^2), \quad I(\mathbf{Q}^2) \text{ calculated from pQCD and OPE}$

- Q^2 sufficiently large for light mesons; $Q^2 = 0$ for heavy-heavy or heavy-light form factors
- more general relation: $\frac{1}{\pi} \int_{t_{\perp}}^{\infty} \rho_{i,j}(t, Q^2) F_i(t) F_j^*(t) dt \leq I(Q^2) \ (BD^{(*)} \text{ form factors})$

Comment: connection with stability of analytic continuation

Analyticity: its splendour and its dangers

Splendour: analytic continuation is unique

Dangers: analytic continuation is unstable (ill posed problem in the Hadamard sense)

- two analytic functions very close along a range Γ may differ arbitrarily outside Γ
 - determination of remote resonances from Breit-Wigner parametrizations!

Comment: connection with stability of analytic continuation

Analyticity: its splendour and its dangers

Splendour: analytic continuation is unique

Dangers: analytic continuation is unstable (ill posed problem in the Hadamard sense)

- two analytic functions very close along a range Γ may differ arbitrarily outside Γ
 - determination of remote resonances from Breit-Wigner parametrizations!

Mathematical result (Tikhonov regularization): analytic continuation is stabilized if the class of admissible functions forms a compact set Ciulli et al (1975)

- Role of the stabilizing condition:
 - Let ${\mathcal C}$ be a compact class of analytic functions
 - If $F_j(t) \in C$ and $\sup_{\Gamma} |F_1(t) F_2(t)| < \epsilon$, then for t outside Γ the inequality $|F_1(t) F_2(t)| < M(\epsilon, t)$ holds, such that $M(\epsilon, t) \to 0$ when $\epsilon \to 0$

Comment: connection with stability of analytic continuation

Analyticity: its splendour and its dangers

Splendour: analytic continuation is unique

Dangers: analytic continuation is unstable (ill posed problem in the Hadamard sense)

- two analytic functions very close along a range Γ may differ arbitrarily outside Γ
 - determination of remote resonances from Breit-Wigner parametrizations!

Mathematical result (Tikhonov regularization): analytic continuation is stabilized if the class of admissible functions forms a compact set Ciulli et al (1975)

- Role of the stabilizing condition:
 - Let ${\mathcal C}$ be a compact class of analytic functions
 - If $F_j(t) \in C$ and $\sup_{\Gamma} |F_1(t) F_2(t)| < \epsilon$, then for t outside Γ the inequality $|F_1(t) F_2(t)| < M(\epsilon, t)$ holds, such that $M(\epsilon, t) \to 0$ when $\epsilon \to 0$

Important remark:

 The inequality derived from Okubo's approach defines a compact set in the Hardy space H² of analytic functions with finite L² norm on the boundary
 ⇒ this ensures the stability of extrapolation to points inside the holomorphy

domain

Consequences of the integral condition

Problem 1: From the L^2 -norm condition

$$rac{1}{\pi}\int\limits_{t_+}^{\infty}
ho(t)|F(t)|^2dt\leq I$$

find constraints on the values of the values $F(t_n)$ and the derivatives $F^{(k)}(t_j)$ at some real or complex points

Problem 1: From the L^2 -norm condition

$$rac{1}{\pi}\int\limits_{t_+}^{\infty}
ho(t)|F(t)|^2dt\leq I$$

find constraints on the values of the values $F(t_n)$ and the derivatives $F^{(k)}(t_j)$ at some real or complex points

Write the problem in a canonical form:

• Conformal mapping of the *t*-plane cut for $t > t_+$ onto a unit disk by $z \equiv \tilde{z}(t, t_0)$, with the inverse $\tilde{t}(z, t_0)$

$$ilde{z}(t, t_0) = rac{\sqrt{t_+ - t_0} - \sqrt{t_+ - t}}{\sqrt{t_+ - t_0} + \sqrt{t_+ - t}}, \qquad ilde{z}(t_0, t_0) = 0$$

 Define an outer function w(z), i.e. analytic and without zeros in |z| < 1, with modulus squared on |z| = 1 equal to ρ(t)|dt̃/dz|:

$$w(z) = \exp\left[rac{1}{2\pi}\int_{0}^{2\pi}\mathrm{d} heta \, rac{e^{i heta}+z}{e^{i heta}-z}\,\ln[
ho(ilde{t}(e^{i heta}))|d ilde{t}/dz|]
ight]$$

 \Rightarrow the function $g(z)=F(\tilde{t}(z,t_0))\,w(z)$ is analytic in |z|<1 and satisfies the inequality

$$rac{1}{2\pi}\int_{0}^{2\pi}|g(e^{i heta})|^{2}d heta\leq I$$

Meiman problem (interpolation in L^2 norm)

If
$$g(z)$$
 analytic in $|z| < 1$ and $rac{1}{2\pi} \int_0^{2\pi} |g(e^{i\theta})|^2 d\theta \leq I$

$$\begin{bmatrix} \frac{1}{k!} \frac{d^k g(z)}{dz^k} \end{bmatrix}_{z=0} = g_k, \quad 0 \le k \le K - 1, \qquad g(z_n) = \xi_n, \quad z_n = z_n^*, \quad 1 \le n \le N$$
$$\bar{l} = l - \sum_{k=0}^{K-1} g_k^2, \quad \bar{\xi}_n = \xi_n - \sum_{k=0}^{K-1} g_k z_n^k$$

\Rightarrow positivity of the following determinant and of its minors:

$$\begin{vmatrix} \bar{l} & \bar{\xi}_{1} & \bar{\xi}_{2} & \cdots & \bar{\xi}_{N} \\ \bar{\xi}_{1} & \frac{z_{1}^{2K}}{1-z_{1}^{2}} & \frac{(z_{1}z_{2})^{K}}{1-z_{1}z_{2}} & \cdots & \frac{(z_{1}z_{N})^{K}}{1-z_{1}z_{N}} \\ \bar{\xi}_{2} & \frac{(z_{1}z_{2})^{K}}{1-z_{1}z_{2}} & \frac{(z_{2})^{2K}}{1-z_{2}^{2}} & \cdots & \frac{(z_{2}z_{N})^{K}}{1-z_{2}z_{N}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \bar{\xi}_{N} & \frac{(z_{1}z_{N})^{K}}{1-z_{1}z_{N}} & \frac{(z_{2}z_{N})^{K}}{1-z_{2}z_{N}} & \cdots & \frac{z_{N}^{2K}}{1-z_{N}^{2}} \end{vmatrix} \ge 0$$

Irinel Caprini, Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012

Alternative solution based on analytic interpolation theory

Convex domain in the space of parameters, defined by the quadratic inequality:

$$\sum_{m,n=1}^{N} \mathcal{A}_{mn}\xi_n\xi_m + \sum_{j,k=0}^{K-1} \mathcal{B}_{jk}g_jg_k + 2\sum_{n=1}^{N}\sum_{k=0}^{K-1} \mathcal{C}_{kn}g_k\xi_n \leq I$$

• Blaschke factors: $|B_j(z)| = 1$ for |z| = 1 defined recurrently by

$$B_{1}(z) = 1, \quad B_{n}(z) = \frac{z - z_{n-1}}{1 - z_{n-1}} B_{n-1}(z), \quad 2 \le n \le N+1,$$

• $\beta_{kl} = \frac{1}{(K+l-k)!} \frac{d^{K+l-k}}{dz^{K+l-k}} \left[\frac{1}{B_{N+1}(z)}\right]_{z=0}, \quad Y_{n} = \left[\frac{z - z_{n}}{B_{N+1}(z)}\right]_{z=z_{n}}$

$$\mathcal{A}_{mn} = \frac{Y_n Y_m}{z_n^K z_m^K} \frac{1}{1 - z_n z_m}, \qquad \mathcal{B}_{jk} = \sum_{l=L}^{-1} \beta_{jl} \beta_{kl}$$
$$\mathcal{C}_{kn} = \frac{Y_n}{z_n^K} \sum_{l=k-K}^{-1} \frac{\beta_{kl}}{z_n^{l+1}}$$

_1

Inclusion of the phase in the elastic region

Problem 2: From the conditions

$$rac{1}{\pi}\int\limits_{t_+}^\infty
ho(t)|F(t)|^2dt\leq l$$
 and $\arg[F(t+i\epsilon)=\delta(t), \ t_+\leq t\leq t_{in}$

find constraints on the values of the derivatives $F^{(k)}(t_i)$ and the values $F(t_n)$

Inclusion of the phase in the elastic region

Problem 2: From the conditions

$$rac{1}{\pi}\int\limits_{t_+}^\infty
ho(t)|F(t)|^2 dt \leq l$$
 and $rg[F(t+i\epsilon)=\delta(t), \ t_+\leq t\leq t_{in}$

find constraints on the values of the derivatives $F^{(k)}(t_i)$ and the values $F(t_n)$

Standard techniques of functional optimization \Rightarrow solution described by the inequality:

$$\sum_{m,n=1}^{N} \mathcal{A}_{mn}\xi_{n}\xi_{m} + \sum_{j,k=0}^{K-1} \mathcal{B}_{jk}g_{j}g_{k} + 2\sum_{n=1}^{N}\sum_{k=0}^{K-1} \mathcal{C}_{kn}g_{k}\xi_{n} + \frac{1}{\pi}\int_{-\theta_{\mathrm{in}}}^{\theta_{\mathrm{in}}} \mathrm{d}\theta\lambda(\theta)V(\theta) \leq I$$

 $\lambda(\theta)$: the solution of a Fredholm integral equation

•
$$\lambda(\theta) - \frac{1}{2\pi} \int_{-\theta_{in}}^{\theta_{in}} d\theta' \lambda(\theta') \mathcal{K}_{\Psi}(\theta, \theta') = V(\theta), \qquad e^{i\theta_{in}} = \tilde{z}(t_{in}, t_0)$$

•
$$\mathcal{K}_{\Psi}(\theta, \theta') \equiv \frac{\sin[(\mathcal{K}-1/2)(\theta-\theta')-\Psi(\theta)+\Psi(\theta')]}{\sin[(\theta-\theta')/2]}$$

• $\Psi(\theta)$ and $V(\theta)$: known functions depending linearly on the input values

Problem 3: From the conditions

$$rac{1}{\pi}\int\limits_{t_{-}}^{\infty}
ho(t)|F(t)|^2dt\leq I' \quad ext{and} \quad \arg[F(t+i\epsilon)=\delta(t), \ \ t_+\leq t\leq t_{in})$$

find constraints on the derivatives $F^{(k)}(t_i)$ and the values $F(t_n)$

Problem 3: From the conditions

$$rac{1}{\pi}\int\limits_{t_{in}}^\infty
ho(t)|F(t)|^2dt\leq l' \quad ext{and} \quad \arg[F(t+i\epsilon)=\delta(t), \ \ t_+\leq t\leq t_{in}]$$

find constraints on the derivatives $F^{(k)}(t_i)$ and the values $F(t_n)$

I' determined from Okubo's method and data below t_{in} , or from data above t_{in}

Problem 3: From the conditions $\frac{1}{\pi} \int_{t_{in}}^{\infty} \rho(t) |F(t)|^2 dt \leq I' \quad \text{and} \quad \arg[F(t+i\epsilon) = \delta(t), \quad t_+ \leq t \leq t_{in}$ find constraints on the derivatives $F^{(k)}(t_j)$ and the values $F(t_n)$

I' determined from Okubo's method and data below t_{in} , or from data above t_{in} Steps of the proof:

• Define the Omnès function (for $t > t_{in}$, $\delta(t)$ arbitrary smooth function):

$$\mathcal{O}(t) = \exp\left(rac{t}{\pi}\int_{t_+}^\infty dt rac{\delta(t')}{t'(t'-t)}
ight)$$

- Define the function h(t) by F(t) = O(t)h(t), with the properties:
 - h(t) is real below t_{in} , *i.e.* is analytic in the *t*-plane cut only for $t > t_{in}$ • $\frac{1}{\pi} \int_{t_{in}}^{\infty} \rho(t) |\mathcal{O}(t)|^2 |h(t)|^2 dt \le l'$
 - \Rightarrow for h(t) we obtained Problem 1, with two modifications:
 - the *t*-plane cut for $t > t_+$ is replaced by the *t*-plane cut for $t > t_{in}$
 - the weight ho(t) is replaced by $ho(t)|\mathcal{O}(t)|^2$

Solution of Problem 3

• Conformal mapping of the *t*-plane cut for $t > t_{in}$ onto the unit disc |z| < 1:

$$ilde{z}(t,t_0) = rac{\sqrt{t_{in}-t_0} - \sqrt{t_{in}-t}}{\sqrt{t_{in}-t_0} + \sqrt{t_{in}-t}}, \qquad ilde{z}(t_0,t_0) = 0$$

Outer functions with modulus related to ρ(t) and |O(t)|:

$$w(z) = \exp\left[\frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\theta \, \frac{e^{i\theta} + z}{e^{i\theta} - z} \ln[\rho(\tilde{t}(e^{i\theta}, t_0))|d\tilde{t}/dz|]\right]$$
$$\omega(z) = \exp\left(\frac{\sqrt{t_{in} - \tilde{t}(z, t_0)}}{\pi} \int_{t_{in}}^{\infty} \mathrm{d}t' \frac{\ln|\mathcal{O}(t')|}{\sqrt{t' - t_{in}(t' - \tilde{t}(z, t_0))}}\right)$$

 \Rightarrow the function g(z) defined by:

$$g(z) \equiv F(\tilde{t}(z,t_0)) \left[\mathcal{O}(\tilde{t}(z,t_0))\right]^{-1} w(z) \, \omega(z)$$

is analytic in $\left|z\right|<1$ and satisfies

$$rac{1}{2\pi}\int_{0}^{2\pi}|g(e^{i heta})|^{2}d heta\leq I^{\prime}$$

\Rightarrow the standard Meiman problem

Properties of the bounds

Rigorous properties:

- are independent of the conformal mapping (the parameter $t_0)$ and the arbitrary phase $\delta(t)$ for $t>t_{in}$
- remain the same if the \leq sign is replaced by the equality sign
- depend in a monotonous way on *I*: larger *I*, weaker constraints

Properties of the bounds

Rigorous properties:

- are independent of the conformal mapping (the parameter $t_0)$ and the arbitrary phase $\delta(t)$ for $t>t_{in}$
- remain the same if the \leq sign is replaced by the equality sign
- depend in a monotonous way on I: larger I, weaker constraints

Related problems: Nevanlinna-Pick and Schur-Carathéodory interpolation for bounded functions

$$||F||_{L^{\infty}} \equiv \sup_{t>t_{+}} |F(t)| \leq I$$

- The bounds in L^{∞} -norm are stronger than those based in L^2 -norm
- By varying $\rho(t)$, we can approach the stronger bounds given by the L^{∞} -norm
 - \Rightarrow hints for a suitable choice of $\rho(t)$: compromise between
 - · choices leading to strong bounds
 - · need to exploit properly the available knowledge of the modulus

Particular consequence: domains without zeros

The formalism predicts domains in the t-plane where zeros are excluded

- Insert the assumption $F(t_c)=0$ in the determinant along with other input values
- If the consistency inequality is violated, the zero is excluded

 \Rightarrow rigorous description of the domains where zeros are forbidden

• Example: given the input values F(0), F'(0) and $F(t_1)$, the domain of points $t_c = \tilde{t}(z_c, t_0)$ where zeros of F(t) are excluded is defined by the inequality

$I - g_0^2 - g_1^2$	$-g_0-g_1z_c$	$g(z_1)-g_0-g_1z_1$	
$-g_0-g_1z_c$	$\frac{z_c^4}{1-z_c^2}$	$\frac{(z_c z_1)^2}{1-z_c z_1}$	< 0
$\left \begin{array}{c} g(z_1)-g_0-g_1z_1 \end{array} \right $	$\frac{(z_0 z_1)^2}{1-z_0 z_1}$	$\frac{(z_1)^4}{1-z_1^2}$	

The knowledge of zeros is important for testing symmetry properties and as input in some dispersive representations

- 1 Constraints on the low energy parameters and zeros
 - BD^(*) form factors (Isgur-Wise function) IC, Lellouch, Neubert (1998)
 - Kπ form factors Bourrely, IC (2005), Abbas, Ananthanarayan, IC, Imsong, Ramanan (2010) (Anant's talk)
 - pion electromagnetic form factor IC (2000), Abbas, Anant, IC, Imsong (2011)
 - $D\pi$ form factors Ananthanarayan, IC, Imsong (2011)
- **2** Extrapolations to intermediate spacelike energies
 - onset of pQCD for the pion form factor Ananthanarayan, IC, Imsong (2012)
- Bounds on the modulus on the timelike axis
 - consistency checks on pion form factor data Ananthanarayan, IC, Das, Imsong (work in progress)
- 4 Analytic parametrizations with unitarity constraints
 - BD^(*) form factors (Isgur-Wise function) IC, Lellouch, Neubert (1998)
 - $B\pi$ vector form factor Bourrely, IC, Lellouch (2009)
 - $D\pi$ form factors, pion electromagnetic form factor (work in progress)

- 1 Constraints on the low energy parameters and zeros
 - BD^(*) form factors (Isgur-Wise function) IC, Lellouch, Neubert (1998)
 - $K\pi$ form factors Bourrely, IC (2005), Abbas, Ananthanarayan, IC, Imsong, Ramanan (2010) (Anant's talk)
 - pion electromagnetic form factor IC (2000), Abbas, Anant, IC, Imsong (2011)
 - $D\pi$ form factors Ananthanarayan, IC, Imsong (2011)
- 2 Extrapolations to intermediate spacelike energies
 - onset of pQCD for the pion form factor Ananthanarayan, IC, Imsong (2012)
- Bounds on the modulus on the timelike axis
 - consistency checks on pion form factor data Ananthanarayan, IC, Das, Imsong (work in progress)
- 4 Analytic parametrizations with unitarity constraints
 - BD^(*) form factors (Isgur-Wise function) IC, Lellouch, Neubert (1998)
 - $B\pi$ vector form factor Bourrely, IC, Lellouch (2009)
 - $D\pi$ form factors, pion electromagnetic form factor (work in progress)

Historical review and references in: G. Abbas, B. Ananthanarayan, IC, I.S. Imsong and S. Ramanan, Eur. Phys. J. A **45**, 389 (2010), arXiv:1004.4257 [hep-ph]

Application I: Low energy constraints on the $D\pi$ weak form factors

Ananthanarayan, IC, Imsong, EPJ A 47, 147 (2011)

Of interest for the determination of the element $|V_{cd}|$ of the CKM matrix

Input:

- $f_{+}(0) = 0.67 \pm 0.10$, from LCSR Khodjamirian et al (2009) and lattice HPQCD (2011)
- low-energy soft-pion theorem (Callan-Treiman): $f_0(M_D^2 M_\pi^2) = f_D/f_\pi$ Dominguez et al (1990)
- phase at low energies from dominant resonances D* and D₀*
- Okubo's approach: derivatives $\chi_k^{(n)}$ of a polarization function at $Q^2=0$

$$rac{1}{\pi}\int_{t+}^{\infty}
ho_{k}^{(n)}(t)|f_{k}(t)|^{2}dt\leq\chi_{k}^{(n)},\qquad k=+,0$$

 $\chi_k^{(n)} = \chi_k^{(n)PT} + \chi_k^{(n)NP}$: pQCD to two loops Chetyrkin et al (2001)

	λ_+ λ	+ X+	´ X ₀ ´	χ_0	$\chi_0^{(n)}$
0 0.01	.70744 -0.001	0543 0.01602	01 0.0045547	0.0002723	0.0048270
1 0.00	19357 -0.000	2723 0.00166	34 0.0004118	0.0000704	0.0004821
2 0.00	02586 -0.000	0704 0.00018	83 0.0000524	0.0000182	0.0000706

Application I: Low energy constraints on the $D\pi$ weak form factors

Ananthanarayan, IC, Imsong, EPJ A 47, 147 (2011)

Of interest for the determination of the element $|V_{cd}|$ of the CKM matrix

Input:

- $f_{+}(0) = 0.67 \pm 0.10$, from LCSR Khodjamirian et al (2009) and lattice HPQCD (2011)
- low-energy soft-pion theorem (Callan-Treiman): $f_0(M_D^2 M_\pi^2) = f_D/f_\pi$ Dominguez et al (1990)
- phase at low energies from dominant resonances D* and D₀*
- Okubo's approach: derivatives $\chi_k^{(n)}$ of a polarization function at $Q^2=0$

$$rac{1}{\pi}\int_{t_+}^{\infty}
ho_k^{(n)}(t)|f_k(t)|^2dt\leq\chi_k^{(n)},\qquad k=+,0$$

 $\chi_k^{(n)} = \chi_k^{(n)PT} + \chi_k^{(n)NP}$: pQCD to two loops Chetyrkin et al (2001)

n	$\chi^{(n)PT}_+$	$\chi^{(n)NP}_+$	$\chi^{(n)}_+$	$\chi_0^{(n)PT}$	$\chi_0^{(n)NP}$	$\chi_0^{(n)}$
0	0.0170744	-0.0010543	0.0160201	0.0045547	0.0002723	0.0048270
1	0.0019357	-0.0002723	0.0016634	0.0004118	0.0000704	0.0004821
2	0.0002586	-0.0000704	0.0001883	0.0000524	0.0000182	0.0000706

Taylor expansion at t = 0:

$$f_k(t) = f_k(0) \left(1 + \frac{\lambda'_k}{M_\pi^2} + \frac{1}{2} \frac{\lambda''_k}{M_\pi^4} + \frac{1}{2} \cdot \frac{\lambda''_k}{M_\pi^4} + \cdots \right), \qquad k = +, 0$$

$D\pi$ form factors: constraints on slope and curvature

Scalar form factor, moment $\chi_0^{(0)}$

Constraints from various moments

Intersection \Rightarrow small allowed domain

· Pole ansatz from Becirevic, Kaidalov (1999) excluded by imposing all the constraints

$D\pi$ form factor: domains where zeros are excluded

Vector form factor, moment $\chi_1^{(0)}$

$D\pi$ form factor: domains where zeros are excluded

Vector form factor, moment $\chi_1^{(0)}$

Scalar form factor, moment $\chi_0^{(0)}$ \Rightarrow larger region using CT theorem

Application I: Low-energy constraints on the pion form factor

Ananthanarayan, IC, Imsong, Phys Rev D83, 096002 (2011) Input:

- $\delta(t) = \delta_1^1(t)$ for $t \le t_{in} = (M_\pi + M_\omega)^2 = (0.917 \text{ GeV})^2$ from Roy equations for $\pi\pi$ amplitude Ananthanarayan et al (2001), Garcia-Martin et al (2011)
- Recent measurements of the modulus up to high energies BaBar (2009)
- Precise measurements at spacelike points Horn et al (2008), Huber et al (2008)

t	Value [GeV ²]	F(t)
t_1 t_2	$-1.60 \\ -2.45$	$\begin{array}{c} 0.243 \pm 0.012 \substack{+0.019 \\ -0.008 \\ 0.167 \pm 0.010 \substack{+0.013 \\ -0.007 \end{array}} \end{array}$

Application I: Low-energy constraints on the pion form factor

Ananthanarayan, IC, Imsong, Phys Rev D83, 096002 (2011) Input:

- $\delta(t) = \delta_1^1(t)$ for $t \le t_{in} = (M_\pi + M_\omega)^2 = (0.917 \text{ GeV})^2$ from Roy equations for $\pi\pi$ amplitude Ananthanarayan et al (2001), Garcia-Martin et al (2011)
- Recent measurements of the modulus up to high energies BaBar (2009)
- Precise measurements at spacelike points Horn et al (2008), Huber et al (2008)

t	Value [GeV ²]	F(t)
t_1 t_2	$-1.60 \\ -2.45$	$\begin{array}{c} 0.243 \pm 0.012 \substack{+0.019 \\ -0.008 \\ 0.167 \pm 0.010 \substack{+0.013 \\ -0.007 \end{array}} \end{array}$

Best results obtained from Problem 3: $\frac{1}{\pi} \int_{t_{in}}^{\infty} \rho(t) |F(t)|^2 dt \le l'$ Example: suitable choice of $\rho(t)$:

•
$$\rho(t) = \rho_{\mu}(t) = \frac{\alpha^2 M_{\mu}^2}{12\pi} \frac{(t-t_{+})^{3/2}}{t^{7/2}} K(t), \qquad K(t) = \int_0^1 du \, \frac{(1-u)u^2}{1-u+M_{\mu}^2 u^2/t}$$

• $I' \equiv \hat{a}^{\pi\pi}_{\mu} = 22.17 \times 10^{-10}$ Davier et al (2010), Malaescu (private communication)

Application I: Low-energy constraints on the pion form factor

Ananthanarayan, IC, Imsong, Phys Rev D83, 096002 (2011) Input:

- $\delta(t) = \delta_1^1(t)$ for $t \le t_{in} = (M_\pi + M_\omega)^2 = (0.917 \text{ GeV})^2$ from Roy equations for $\pi\pi$ amplitude Ananthanarayan et al (2001), Garcia-Martin et al (2011)
- Recent measurements of the modulus up to high energies BaBar (2009)
- Precise measurements at spacelike points Horn et al (2008), Huber et al (2008)

t	Value [GeV ²]	F(t)
t_1 t_2	$-1.60 \\ -2.45$	$\begin{array}{c} 0.243 \pm 0.012 \substack{+0.019 \\ -0.008 \\ 0.167 \pm 0.010 \substack{+0.013 \\ -0.007 \end{array}} \end{array}$

Best results obtained from Problem 3: $\frac{1}{\pi} \int_{t_{in}}^{\infty} \rho(t) |F(t)|^2 dt \le l'$ Example: suitable choice of $\rho(t)$:

•
$$\rho(t) = \rho_{\mu}(t) = \frac{\alpha^2 M_{\mu}^2}{12\pi} \frac{(t-t_{+})^{3/2}}{t^{7/2}} K(t), \qquad K(t) = \int_0^1 du \, \frac{(1-u)u^2}{1-u+M_{\mu}^2 u^2/t}$$

• $I' \equiv \hat{a}^{\pi\pi}_{\mu} = 22.17 \times 10^{-10}$ Davier et al (2010), Malaescu (private communication)

Taylor expansion: $F(t) = 1 + \frac{1}{6} \langle r_{\pi}^2 \rangle t + ct^2 + dt^3 + \cdots$

$$\langle r_\pi^2 \rangle = 0.43 \pm 0.01 \, \mathrm{fm}^2$$

By varying all the input parameters, $\langle r_{\pi}^2 \rangle$, $F(t_1)$, $\hat{a}_{\mu}^{\pi\pi}$, $\delta_1^1(t)$:

 $3.75 \text{ GeV}^{-4} \lesssim c \lesssim 3.98 \text{ GeV}^{-4}$, $9.91 \text{ GeV}^{-6} \lesssim d \lesssim 10.46 \text{ GeV}^{-6}$

with a strong correlation between the values of c and d

 $\langle r_{\pi}^2 \rangle = 0.43 \pm 0.01 \, \mathrm{fm}^2$ and $F(t_1) = 0.234^{+0.022}_{-0.014} \Rightarrow$ simple zeros on the real axis are excluded in the range $-4.46 \, \mathrm{GeV}^2 \leq t_0 \leq 0.84 \, \mathrm{GeV}^2$

 $\langle r_{\pi}^2 \rangle = 0.43 \pm 0.01 \, {\rm fm}^2$ and $F(t_1) = 0.234^{+0.022}_{-0.014} \Rightarrow$ simple zeros on the real axis are excluded in the range $-4.46 \ {\rm GeV}^2 \leq t_0 \leq 0.84 \ {\rm GeV}^2$

Complex zeros, no spacelike input $\langle r_{\pi}^2 \rangle = 0.43 \text{ fm}^2 \text{ (smaller domain)}$ $\langle r_{\pi}^2 \rangle = 0.44 \text{ fm}^2 \text{ (bigger domain)}$

 $\langle r_{\pi}^2 \rangle = 0.43 \pm 0.01 \, {\rm fm}^2$ and $F(t_1) = 0.234^{+0.022}_{-0.014} \Rightarrow$ simple zeros on the real axis are excluded in the range $-4.46 \ {\rm GeV}^2 \leq t_0 \leq 0.84 \ {\rm GeV}^2$

Complex zeros, no spacelike input $\langle r_{\pi}^2 \rangle = 0.43 \text{ fm}^2 \text{ (smaller domain)}$ $\langle r_{\pi}^2 \rangle = 0.44 \text{ fm}^2 \text{ (bigger domain)}$ Complex zeros, with spacelike input: $F(t_1) = 0.234$, $\langle r_{\pi}^2 \rangle = 0.43 \, \text{fm}^2$

Application II: Bounds on the pion form factor on the spacelike axis

Ananthanarayan, IC, Imsong, Phys Rev D85, 096006 (2012)

Input:

- F(0) = 1, $\langle r_{\pi}^2 \rangle = 0.43 \pm 0.01 \, \text{fm}^2$, $F(-2.45 \, \text{GeV}^2) = 0.167 \pm 0.010^{+0.013}_{-0.007}$
- $\arg[F(t+i\epsilon)] = \delta_1^1(t), \quad 4M_\pi^2 \le t \le t_{in}, \quad t_{in} = (M_\omega + M_\pi)^2$
- $rac{1}{\pi}\int\limits_{t_m}^\infty
 ho(t)|F(t)|^2 dt \leq l', ext{ for suitable choices of the weight }
 ho(t)$

Direct evaluation of I':

- BaBar data Aubert et al (2009) up to 3 GeV
- very conservative estimate above 3 GeV, imposing the decrease $|F(t)| \sim 1/t$ above 20 GeV

 \Rightarrow small sensitivity to the high-energy assumptions for weights that decrease as $1/\sqrt{t}$ or faster

Application II: Bounds on the pion form factor on the spacelike axis

Ananthanarayan, IC, Imsong, Phys Rev D85, 096006 (2012)

Input:

- F(0) = 1, $\langle r_{\pi}^2 \rangle = 0.43 \pm 0.01 \, \text{fm}^2$, $F(-2.45 \, \text{GeV}^2) = 0.167 \pm 0.010^{+0.013}_{-0.007}$
- $\arg[F(t+i\epsilon)] = \delta_1^1(t), \quad 4M_\pi^2 \le t \le t_{in}, \quad t_{in} = (M_\omega + M_\pi)^2$
- $rac{1}{\pi}\int\limits_{t_m}^\infty
 ho(t)|F(t)|^2 dt \leq l', ext{ for suitable choices of the weight }
 ho(t)$

Direct evaluation of I':

- BaBar data Aubert et al (2009) up to 3 GeV
- very conservative estimate above 3 GeV, imposing the decrease $|F(t)| \sim 1/t$ above 20 GeV

 \Rightarrow small sensitivity to the high-energy assumptions for weights that decrease as $1/\sqrt{t}$ or faster

ho(t)	<i>I'</i>
1	1.788 ± 0.039
$1/\sqrt{t}$	0.687 ± 0.028
1/t	0.578 ± 0.022
$1/t^{2}$	$\textbf{0.523} \pm \textbf{0.017}$

Choice of the best weight

 $\rho(t) = 1/\sqrt{t}$, inclusion of $F(t_2)$

 $\rho(t) = 1/\sqrt{t}$, inclusion of $F(t_2)$

Comparison of various weights

weights that decrease too fast have a weak constraining power at large energies

- the weight related to the standard Okubo approach and ρ_{μ} , which decrease like $1/t^2$, are not useful for extrapolation to large Q^2
- · weights that decrease too slowly are sensitive to the asymptotic tail
 - \Rightarrow suitable choice: $ho(t) = 1/\sqrt{t}$

Effect of the uncertainty of the input

Including the errors:

- vary separately each input and combine the resulting errors in quadrature
- vary simultaneously all the input quantities inside their error intervals
- \Rightarrow lead to comparable results

Effect of the uncertainty of the input

Including the errors:

- vary separately each input and combine the resulting errors in quadrature
- vary simultaneously all the input quantities inside their error intervals
- \Rightarrow lead to comparable results

Bounds for the optimal choice $\rho = \frac{1}{\sqrt{t}}$

- white band: allowed domain for central values of the input variables
- grey bands: enlarged domain when the input is varied inside the error bars

Comparison with experimental data

Low energy data

• A few points (Amendolia, Bebek) in conflict with the bounds

Low energy data

High energy data

• A few points (Amendolia, Bebek) in conflict with the bounds

$$\begin{split} F_{\rm QCD}^{\rm LO}(-Q^2) &= \frac{8\pi t_{\pi}^2 \alpha_s(\mu^2)}{Q^2} \\ F_{\rm QCD}^{\rm NLO}(-Q^2) &= \frac{8t_{\pi}^2 \alpha_s^2(\mu^2)}{Q^2} \left[\frac{\beta_0}{4} \left(\ln \frac{\mu^2}{Q^2} + \frac{14}{3} \right) - 3.92 \right] \end{split}$$

The asymptotic regime is known to set in quite slowly

- · Various nonperturbative models for the intermediate regions
- Definite conclusions difficult due to lack of data at high energy

$$\begin{split} F_{\rm QCD}^{\rm LO}(-Q^2) &= \frac{8\pi f_{\pi}^2 \alpha_s(\mu^2)}{Q^2} \\ F_{\rm QCD}^{\rm NLO}(-Q^2) &= \frac{8f_{\pi}^2 \alpha_s^2(\mu^2)}{Q^2} \left[\frac{\beta_0}{4} \left(\ln \frac{\mu^2}{Q^2} + \frac{14}{3} \right) - 3.92 \right] \end{split}$$

The asymptotic regime is known to set in quite slowly

- · Various nonperturbative models for the intermediate regions
- · Definite conclusions difficult due to lack of data at high energy

Application III: Bounds on the pion form factor in the timelike region

Ananthanarayan, IC, Das, Imsong, preliminary results

- The formalism applied up to now (Problem 3) does not use as input data on the modulus |F(t)| for t < t_{in}
- On the other hand, the formalism allows to find bounds on this quantity
- The function

$$g(z) \equiv F(\tilde{t}(z, t_0)) \left[\mathcal{O}(\tilde{t}(z, t_0)) \right]^{-1} w(z) \, \omega(z)$$

is analytic and real for $t < t_{in}$

- Derive upper and lower bounds on g(z) from Meiman condition
- They lead to bounds on the modulus F(t), calculated as

$$|F(t)| = |\mathcal{O}(t)| \frac{g(\tilde{z}(t_0, t))}{w(\tilde{z}(t_0, t))}$$

 $|\mathcal{O}(t)| = \exp\left(rac{t}{\pi} PV \int_{t_+}^{\infty} dt rac{\delta(t')}{t'(t'-t)}
ight)$

$$\delta_1^1(t) \Rightarrow \delta_1^1(t) + \arg\left[1 + \frac{\epsilon t}{t_\omega - t}\right], \quad t_\omega = (M_\omega - i/2\,\Gamma_\omega)^2, \quad \epsilon \approx 1.9 \times 10^{-3}$$

Leutwyler (2002), Hanhart (2012)

$$\delta_1^1(t) \Rightarrow \delta_1^1(t) + \arg\left[1 + \frac{\epsilon t}{t_\omega - t}\right], \quad t_\omega = (M_\omega - i/2\,\Gamma_\omega)^2, \quad \epsilon \approx 1.9 \times 10^{-3}$$

Leutwyler (2002), Hanhart (2012)

Methods of including the uncertainties:

- vary separately each input and combine the errors in quadrature
- · vary simultaneously all the input variables inside their error intervals

$$\delta_1^1(t) \Rightarrow \delta_1^1(t) + \arg\left[1 + \frac{\epsilon t}{t_\omega - t}\right], \quad t_\omega = (M_\omega - i/2\,\Gamma_\omega)^2, \quad \epsilon \approx 1.9 \times 10^{-3}$$

Leutwyler (2002), Hanhart (2012)

• accurate recent data: Belle (2008), BaBar (2009), KLOE (2011), CMD-2 (2007)

$$\delta_1^1(t) \Rightarrow \delta_1^1(t) + \arg\left[1 + \frac{\epsilon t}{t_\omega - t}\right], \quad t_\omega = (M_\omega - i/2\,\Gamma_\omega)^2, \quad \epsilon \approx 1.9 \times 10^{-3}$$

Leutwyler (2002), Hanhart (2012)

- The bounds describe more precisely the modulus at low energies than the data
- A few experimental points (BaBar) in conflict with the bounds

Application IV: Parametrization of the $B\pi$ vector form factor

Bourrely, IC, Lellouch, arXiv:0807.2772, Phys Rev D79, 013008 (2009)

Of interest for the determination of the element $|V_{ub}|$ of the CKM matrix

$$\frac{d\Gamma}{dq^2}(\bar{B}^0 \to \pi^+ I^- \bar{\nu}_\ell) = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B^3} \lambda^{3/2} (q^2) |f_+(q^2)|^2$$

Physical range of semileptonic decays: $0 \le q^2 \le t_- \equiv (m_{B^0} - m_{\pi^+})^2 = 26.42 \text{ GeV}^2$ Basic properties:

- $f_+(q^2)$ analytic in the q^2 -plane cut for $q^2 \ge t_+$, with $t_+ = (m_{B^0} + m_{\pi^+})^2$ except for a pole at $q^2 = M_{B^*}^2$
- Threshold behaviour: Im $f_+(q^2) \sim (q^2-t_+)^{3/2}$
- Unitarity constraint (Okubo): $\frac{1}{\pi}\int_{t_+}^{\infty}
 ho(t)|f_+(t)|^2dt\leq\chi_{1-}(0)$

$$\chi_{1-}(0) = \frac{3[1+1.14\,\alpha_s(\bar{m}_b)]}{32\pi^2 m_b^2} - \frac{\bar{m}_b \langle \bar{u}u \rangle}{m_b^6} - \frac{\langle \alpha_s G^2 \rangle}{12\pi m_b^6} \approx 5.01 \times 10^{-4}$$

Generalis (1990), Lellouch (1996), Arnesen et al (2005)

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{k=0}^{K-1} b_{k}(t_{0}) \left[z^{k} - (-1)^{k-K} \frac{k}{K} z^{K} \right], \qquad z = \tilde{z}(q^{2}, t_{0})$$

Unitarity	y constraint:	$\sum_{j,k=0}^{N} l$	$B_{jk}(t_0)b_j(t_0)$	$b)b_k(t_0) \leq$	≤ 1		
	$t_0({ m GeV}^2)$	B ₀₀	B ₀₁	B ₀₂	B ₀₄	B ₀₄	B ₀₅
	0	0.0197	-0.0049	-0.0108	0.0057	0.0006	-0.0005
	t _{opt}	0.0197	0.0042	-0.0109	-0.0059	-0.0002	0.0012
	t_	0.0197	0.0118	-0.0015	-0.0078	-0.0077	-0.0053
			$B_{j(j+k)} = k$	B _{0k} ,	$B_{jk} = B_{kj}$		

Optimal choice of t_0 :

$$t_{opt} \equiv (m_B + m_\pi) (\sqrt{m_B} - \sqrt{m_\pi})^2 = 20.062 \, {
m GeV}^2$$

ĸ

Fit of theoretical and experimental data

Theoretical and experimental input:

- $f_+(0) = 0.26 \pm 0.03$, from LCSR Khodjamirian et al (1007, Ball (2007)
- lattice calculations at eight q^2 -points FNAL-MILC and HPQCD
- experimental data on the partial branching fractions over bins in q^2 BaBar, Belle, CLEO

Fit of theoretical and experimental data

Theoretical and experimental input:

- $f_+(0) = 0.26 \pm 0.03$, from LCSR Khodjamirian et al (1007, Ball (2007)
- lattice calculations at eight q²-points FNAL-MILC and HPQCD
- experimental data on the partial branching fractions over bins in q^2 BaBar, Belle, CLEO

Combined fit of experimental and theoretical points, with unitarity constraint:

$$\begin{aligned} \mathcal{L}(b_j, |V_{ub}|) &= \chi^2(b_j, |V_{ub}|) + \lambda \left(\sum_{j,k=0}^{K} B_{jk} b_j b_k - 1 \right) \\ \chi^2(b_k, |V_{ub}|) &= \chi^2_{th} + \chi^2_{exp} \\ \chi^2_{th} &= \sum_{j,k=1}^{8} [f_j^{in} - f_+(q_j^2)] C_{jk}^{-1} [f_k^{in} - f_+(q_k^2)] + (f_+(0) - f_{\text{LCSR}})^2 / (\delta f_{\text{LCSR}})^2 \\ \chi^2_{exp} &= \sum_{j,k=1}^{22} [B_j^{in} - \mathcal{B}_j(f_+)] C_{\mathcal{B}jk}^{-1} [\mathcal{B}_k^{in} - \mathcal{B}_k(f_+)] \end{aligned}$$

Systematic error:

- In this approach the systematic error is the truncation error of the expansion
- Due to the unitarity constraint, the higher order coefficients cannot grow arbitrarily \Rightarrow the truncation error can be controlled
 - let b_{K+1}^{max} be the maximum value of $|b_{K+1}|$, allowed by the unitarity constraint, for fixed values of b_k , $k \leq K$, obtained from the fit

• realistic prescription for the error:
$$\delta f_+(q^2)_{syst} = \frac{b_{K+1}^{max}|z^{K+1}|}{1-q^2/m_{Dx}^2}$$

Systematic error:

- In this approach the systematic error is the truncation error of the expansion
- Due to the unitarity constraint, the higher order coefficients cannot grow arbitrarily \Rightarrow the truncation error can be controlled
 - let b_{K+1}^{max} be the maximum value of $|b_{K+1}|$, allowed by the unitarity constraint, for fixed values of b_k , $k \leq K$, obtained from the fit

• realistic prescription for the error:
$$\delta f_+(q^2)_{syst} = \frac{b_{K+1}^{max}|z^{K+1}|}{1-q^2/m_{D*}^2}$$

Fitting strategy:

Increase the number of parameters until the systematic error becomes negligible compared to the statistical error along the whole semileptonic region

j	0	1	2	3
bj	0.42 ± 0.03	-0.47 ± 0.13	0.2 ± 1.3	-0.8 ± 4.1

Also: $|V_{ub}| = (3.54 \pm 0.30) \times 10^{-3}$ (remarkably close to expectations from global CKM fits)

	total	LCSR	LQCD	Belle	CLEO	Babar-t	BaBar-u
n _{data}	31	1	3+5	3	3	3	12
χ^2	21.0	0	5.1	0.0	2.8	4.3	8.7

j	0	1	2	3
bj	$\textbf{0.42}\pm\textbf{0.03}$	-0.47 ± 0.13	0.2 ± 1.3	-0.8 ± 4.1

Also: $|V_{ub}| = (3.54 \pm 0.30) imes 10^{-3}$ (remarkably close to expectations from global CKM fits)

• Errors found by standard $\Delta\chi^2$ analysis, not the linear approximation in the error propagation

- The availability of a reliable bound on an integral involving the square of the modulus of a form factor on the unitarity cut allows one to:
 - constrain the form factor shape parameters at low energy
 - isolate domains in the complex plane where zeros are excluded
 - find bounds at intermediate spacelike regions and test the onset of perturbative QCD
 - control the truncation error of analytic parametrizations
- The knowledge of the phase along a part of the unitarity cut considerably improves the results
- Precise values at points inside the analyticity domain (from ChPT, lattice, experiment) crucial for improving the predictions