Baryons in/and Lattice QCD Chiral Dynamics 2012 Jefferson Laboratory, Virginia, USA

OUTLINE

Baryons in lattice QCD

- things I wish I had time to discuss
- nucleon matrix elements $g_{A}, G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right)$
- light quark mass dependence of the nucleon (baryons)

Baryons and lattice QCD

- electromagnetic self-energy of $M_{p}-M_{n}$ and isovector nucleon magnetic polarizability

Baryons in lattice QCD

electric polarizabilites and magnetic moments of the nucleon from lattice QCD

electromagnetic collaboration: Will Detmold, Brian Tiburzi, AWL
see talk by Brian Tiburzi:"Lattice QCD methods for hadronic polarizabilities" Monday, Hadron Structure and Meson Baryon Interactions

Baryons in lattice QCD

$$
\langle N| \bar{q}_{l} q_{l}|N\rangle \quad\langle N| \bar{s} s|N\rangle
$$

see talk by Jorge Martin Camalich:
"Baryon Chiral Perturbation Theory and Connection to Lattice QCD"

see talk by Dru Renner:

"Matrix elements from lattice QCD"
Monday, Hadron Structure and Meson Baryon Interactions
Dru gave very nice talk, with cautionary summary I agree with 100\%
for baryon matrix elements, lattice calculations currently lack sufficient study of systematic effects: finite volume, excited state contamination, continuum limit, ...
\longrightarrow "Apparent conflicts with [experimental] measurements not justified"

\rightarrow
"Apparent conflicts with χ PT not compelling either"

see talk by Dru Renner:

"Matrix elements from lattice QCD"
Monday, Hadron Structure and Meson Baryon Interactions
If we don't take these cautions seriously, then we are forced to ask,

Is there something wrong with QCD?
or
Is there something wrong with our lattice QCD calculations?

Baryons in lattice QCD

 form factors, $g_{A},\langle x\rangle^{u-d}$

- no discernible pion mass dependence!
must be large cancelations between different orders
convergence is broken

Baryons in lattice QCD

 form factors, $g_{A},\langle x\rangle^{u-d}$

- apply rule of thumb cut $m_{\pi} L \geq 4$
reasons to believe this may not be sufficient

Baryons in lattice QCD

 form factors, $g_{A},\langle x\rangle^{u-d}$

- apply cut $m_{\pi} L \geq 5$
reasons to believe this may not be sufficient

Baryons in lattice QCD

rule of thumb which works well for pion/kaon, does not work as well baryons

Baryons in lattice QCD

quantities which are small mass splittings, or derivatives sigma terms from Feynman-Hellmann Theorem will be especially sensitive to these volume effects - see talk Jorge Martin Camalich

Baryons in lattice QCD

$\Delta M_{N}^{F V}=\frac{3 \pi g_{A}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} \frac{m_{\pi}^{3}}{m_{\pi} L} \sum \mathbf{n} \neq 0 \frac{e^{-|\mathbf{n}| m_{\pi} L}}{|\mathbf{n}|}$

Baryons in lattice QCD

- similar issue for the elastic form factors, charge radii and anomalous magnetic moment

Baryons in lattice QCD

Lattice QCD Collaborations are actively exploring systematics

gray band - traditional plateau method
red values - "open sink" method - allows for more explicit study of excited state contamination

Baryons in lattice QCD

 form factors, $g_{A},\langle x\rangle^{u-d}$
Lattice QCD Collaborations are actively exploring systematics

Detmold, Lin and Stefan Meinel: arXiv:I203.3378

$$
m_{\pi} \simeq 245 \mathrm{MeV}
$$

Calculation of the axial charged of heavy (b) hadrons See talk Wed. by Stefan Meinel

\cdot
construct matrix elements for many source-sink separations, allowing for robust study of excited state contamination

$$
R_{i}(t)=\left(g_{i}\right)_{e f f}-A_{i} e^{-\delta_{i} t}
$$

Baryons in lattice QCD

Lattice QCD Collaborations are actively exploring systematics

$$
\begin{aligned}
& G_{E}=F_{1}-\tau F_{2} \\
& G_{M}=F_{1}+F_{2}
\end{aligned}
$$

Typical comparison of lattice QCD with experimental form factors: LHPC arXiv:0907.4194

Baryons in lattice QCD

Lattice QCD Collaborations are actively exploring systematics

Just Tuesday - I received new results from the LHP Collaboration

Michael Engelhardt Jeremy Green
Stefan Krieg John Negele Andrew Pochinsky
Sergey Syritsyn

Results computed on BMWc ensemble isotropic clover Wilson with 2-level HEX-smeared gauge links

$$
\begin{aligned}
& m_{\pi} \simeq 150 \mathrm{MeV} \\
& a \simeq 0.116 \mathrm{fm} \\
& L \simeq 5.6 \mathrm{fm} \\
& m_{\pi} L \simeq 4.3 \\
& N_{s r c}=7752
\end{aligned}
$$

Baryons in lattice QCD

Lattice QCD Collaborations are actively exploring systematics

LHPC: Michael Engelhardt, Jeremy Green, Stefan Krieg, John Negele, Andrew Pochinsky, Sergey Syritsyn

Baryons in lattice QCD

Lattice QCD Collaborations are actively exploring systematics

LHPC: Michael Engelhardt, Jeremy Green, Stefan Krieg, John Negele, Andrew Pochinsky, Sergey Syritsyn

Baryons in lattice QCD: Conclusions I

we believe lattice QCD, extrapolated to the continuum and infinite volume limits, and to the physical light quark masses, is the QCD of nature
while the ground state baryon spectrum has been nicely reproduced by lattice QCD calculations, nucleon matrix elements have proven to be significantly more challenging, alarming some even in the lattice community about the severity of the discrepancy - most notably with the nucleon axial charge, g_{A}

I share Dru Renner's opinion that after the 2008 lattice conference, too many groups fell into the trap of racing to the physical pion mass, without carefully checking their systematics.
sizes of physical volumes, pion masses and statistics which work for pion/kaon physics, heavy-quark physics, are typically not sufficient for computing properties of baryons
the latest LHPC results are the most significant thing to come from lattice QCD in this area since the onset of physical pion mass calculations
it remains for us to understand why their method works

Baryons in lattice QCD Light quark mass dependence of M_{N}

At the 2008 Lattice QCD Conference (Williamsburg), Budapest-Marseille-Wupertal collaboration (BMWc) surprised the community with calculations closer to the physical limit than the rest of us

As Laurent Lellouch mentioned, this heralded the paradigm change in the relation between lattice QCD and effective field theory at least for simple quantities

Baryons in lattice QCD

At the 2008 Lattice QCD Conference, something else unexpected happened

Baryons in lattice QCD Light quark mass dependence of M_{N}

LHP Collaboration arXiv:0806.4549

Baryons in lattice QCD Light quark mass dependence of M_{N}

NNLO Heavy Baryon Fit
$M_{N}=954 \pm 42 \pm 20 \mathrm{MeV}$

Ruler Approximation

$$
M_{N}=\alpha_{0}^{N}+\alpha_{1}^{N} m_{\pi}
$$

Baryons in lattice QCD Light quark mass dependence of M_{N}

NNLO Heavy Baryon Fit
$M_{N}=954 \pm 42 \pm 20 \mathrm{MeV}$

Ruler Approximation

$$
\begin{aligned}
M_{N} & =\alpha_{0}^{N}+\alpha_{1}^{N} m_{\pi} \\
& =938 \pm 9 \mathrm{MeV}
\end{aligned}
$$

Baryons in lattice QCD Light quark mass dependence of M_{N}

NNLO Heavy Baryon Fit
$M_{N}=954 \pm 42 \pm 20 \mathrm{MeV}$

Ruler Approximation

$$
\begin{aligned}
M_{N} & =\alpha_{0}^{N}+\alpha_{1}^{N} m_{\pi} \\
& =938 \pm 9 \mathrm{MeV}
\end{aligned}
$$

I am not advocating this as
a good model for QCD!

Baryons in lattice QCD Light quark mass dependence of M_{N}

Baryons in lattice QCD Light quark mass dependence of M_{N}

What does this teach us?

For these pion masses, there is a strong cancelation between LO, NLO and NNLO $\chi \mathrm{PT}$ contributions perhaps should have been expected given poor convergence (but just not a straight line!!!)

Baryons in lattice QCD Light quark mass dependence of M_{N}

What if we consider the octet and decuplet in the three flavor theory?
$M_{N}=M_{0}+\alpha_{N}^{\pi} m_{\pi}^{2}+\alpha_{N}^{K} m_{K}^{2}$

$$
\begin{aligned}
-\frac{1}{16 \pi^{2} f^{2}}[3 & 3(D+F)^{2} m_{\pi}^{3}+\frac{\pi}{3}(D-3 F)^{2} m_{\eta}^{3} \\
& +\frac{2 \pi}{3}\left(5 D^{2}-6 D F+9 F^{2}\right) m_{K}^{3} \\
& \left.+\frac{8}{3} \mathcal{F}\left(m_{\pi}, \Delta, \mu\right)+\frac{2}{3} \mathcal{F}\left(m_{K}, \Delta, \mu\right)\right]
\end{aligned}
$$

Possible convergence is significantly challenged (fails) by kaon and eta loops
LHP Collaboration arXiv:0806.4549
PACS-CS Collaboration arXiv:0905.0962

Baryons in lattice QCD

Light quark mass dependence of M_{N}

figures: Jenkins, Manohar, Negele and AWL arXiv:0907.0529

NLO SU(3) chiral fits to spectrum are not consistent with phenomenological values of D, F

$$
D \sim 0.75, \quad F \sim 0.50
$$

Baryons in lattice QCD

What is the status now (2012)?

Physical point NOT included in fit

Baryons in lattice QCD Light quark mass dependence of M_{N}

What is the status now (2012)?

χ QCD Collaboration uses Overlap Valence fermions on Domain-Wall (RBC-UKQCD) sea fermions

Baryons in lattice QCD Light quark mass dependence of M_{N}

What is the status now (2012)?

RBC-UKQCD Collaboration uses Domain-Wall valence and sea fermions

Baryons in lattice QCD Light quark mass dependence of M_{N}

What is the status now (2012)?

Taking this seriously yields I am not advocating this as

$$
\sigma_{\pi N}=67 \pm 4 \mathrm{MeV}
$$

Large N_{c} and $\mathrm{SU}(3)$ Chiral Perturbation Theory

What can we do?

Consider 2-flavor expansion for hyperons
Beane, Bedaque, Parreno and Savage nucl-th/03II027 Tiburzi and AWL arXiv:0808.0482 Jiang and Tiburzi arXiv:0905.0857 Mai, Bruns, Kubis and Meissner arXiv:0905.28I0

Jiang,Tiburzi and AWL arXiv:09 I I.472 I Jiang and Tiburzi arXiv:09|2.2077

Large N_{c} and $\mathrm{SU}(3)$ Chiral Perturbation Theory

What can we do?

Consider 2-flavor expansion for hyperons
Beane, Bedaque, Parreno and Savage nucl-th/03 I I027 Tiburzi and AWL arXiv:0808.0482 Jiang and Tiburzi arXiv:0905.0857 Mai, Bruns, Kubis and Meissner arXiv:0905.28I0 Jiang, Tiburzi and AWL arXiv:09 I I.472 I Jiang and Tiburzi arXiv:09|2.2077

Read the literature and apply an old idea to our new problem
combine the constraints of large N_{c} and $\mathrm{SU}(3)$ symmetries

Large N_{c} and $S U(3)$ Chiral Perturbation Theory

Combined large N_{c} and $\mathrm{SU}(3)$ symmetries

't Hooft 1974
Witten 1979
Coleman I979
Dashen, Jenkins, Manohar I993

see talks at this conference by
Alvaro Calle Cardon:"I/ N_{c} Chiral Perturbation Theory in the one-Baryon Sector"
Vojtech Krejcirik:"Model-independent form factor relations at large N_{c} "
Mathias Lutz:"Strangeness in the baryon ground states"

Large N_{c} and $S U(3)$ Chiral Perturbation Theory

theory is placed on solid theoretical foundation

$$
\lim _{N_{c} \rightarrow \infty} M_{B}=\infty
$$

controlled expansion in $1 / N_{c}$ (at least formally)
inclusion of spin $3 / 2$ dof well defined field theoretically

$$
M_{\Delta}-M_{N} \propto \frac{1}{N_{c}}
$$

naturally explains smallness of baryon octet GMO relation

$$
\begin{aligned}
N_{c} m_{s}^{3 / 2} & \propto \text { flavor-1 } \\
m_{s}^{3 / 2} & \propto \text { flavor-8 } \\
m_{s}^{3 / 2} / N_{c} & \propto \text { flavor-27 leading correction to GMO }
\end{aligned}
$$

Large N_{c} and $S U(3)$ Chiral Perturbation Theory

gives you "smarter" observables to measure/calculate

eg: Spectrum $\quad M=M^{1,0}+M^{8,0}+M^{27,0}+M^{64,0}$

$$
\begin{aligned}
M^{1,0} & =c_{(0)}^{1,0} N_{c} \mathbf{1}+c_{(2)}^{1,0} \frac{1}{N_{c}} J^{2} \\
M^{8,0} & =c_{(1)}^{8,0} T^{8}+c_{(2)}^{8,0} \frac{1}{N_{c}}\left\{J^{i}, G^{i 8}\right\}+c_{(3)}^{8,0} \frac{1}{N_{c}^{2}}\left\{J^{2}, T^{8}\right\} \\
M^{27,0} & =c_{(2)}^{27,0} \frac{1}{N_{c}}\left\{T^{8}, T^{8}\right\}+c_{(3)}^{27,0} \frac{1}{N_{c}^{2}}\left\{T^{8},\left\{J^{i}, G^{i 8}\right\}\right\} \\
M^{64,0} & =c_{(3)}^{64,0} \frac{1}{N_{c}^{2}}\left\{T^{8},\left\{T^{8}, T^{8}\right\}\right\} \\
J^{i} & =q^{\dagger}\left(J^{i} \otimes \mathbf{1}\right) q \quad \text { one-body spin operator } \\
T^{a} & =q^{\dagger}\left(\mathbf{1} \otimes T^{a}\right) q \quad \text { one-body flavor operator } \\
G^{i a} & =q^{\dagger}\left(J^{i} \otimes T^{a}\right) q \text { one-body spin-flavor operator }
\end{aligned}
$$

Large N_{c} and $\mathrm{SU}(3)$ Chiral Perturbation Theory

Jenkins and Lebed hep-ph/9502227

Label	Operator	Coefficient	Mass Combination	$1 / N_{c}$	$S U(3)$
M_{1}	$\mathbb{1}$	$160 N_{c} c_{(0)}^{1,0}$	$25(2 N+\Lambda+3 \Sigma+2 \Xi)-4\left(4 \Delta+3 \Sigma^{*}+2 \Xi^{*}+\Omega\right)$	N_{c}	1
M_{2}	J^{2}	$-120 \frac{1}{N_{c}} c_{(2)}^{1,0}$	$5(2 N+\Lambda+3 \Sigma+2 \Xi)-4\left(4 \Delta+3 \Sigma^{*}+2 \Xi^{*}+\Omega\right)$	$1 / N_{c}$	1
M_{3}	T^{8}	$20 \sqrt{3} \epsilon c_{(1)}^{8,0}$	$5(6 N+\Lambda-3 \Sigma-4 \Xi)-2\left(2 \Delta-\Xi^{*}-\Omega\right)$	1	ϵ
M_{4}	$\left\{J^{i}, G^{i 8}\right\}$	$-5 \sqrt{3} \frac{1}{N_{c}} \epsilon c_{(2)}^{8,0}$	$N+\Lambda-3 \Sigma+\Xi$	$1 / N_{c}$	ϵ
M_{5}	$\left\{J^{2}, T^{8}\right\}$	$30 \sqrt{3} \frac{1}{N_{c}^{2}} \epsilon c_{(3)}^{8,0}$	$(-2 N+3 \Lambda-9 \Sigma+8 \Xi)+2\left(2 \Delta-\Xi^{*}-\Omega\right)$	$1 / N_{c}^{2}$	ϵ
M_{6}	$\left\{T^{8}, T^{8}\right\}$	$126 \frac{1}{N_{c}} \epsilon^{2} c_{(2)}^{27,0}$	$35(2 N-3 \Lambda-\Sigma+2 \Xi)-4\left(4 \Delta-5 \Sigma^{*}-2 \Xi^{*}+3 \Omega\right)$	$1 / N_{c}$	ϵ^{2}
M_{7}	$\left\{T^{8}, J^{i} G^{i 8}\right\}$	$-63 \frac{1}{N_{c}^{2}} \epsilon^{2} c_{(3)}^{27,0}$	$7(2 N-3 \Lambda-\Sigma+2 \Xi)-2\left(4 \Delta-5 \Sigma^{*}-2 \Xi^{*}+3 \Omega\right)$	$1 / N_{c}^{2}$	ϵ^{2}
M_{8}	$\left\{T^{8},\left\{T^{8}, T^{8}\right\}\right\}$	$9 \sqrt{3} \frac{1}{N_{c}^{2}} \epsilon^{3} c_{(3)}^{64,0}$	$\Delta-3 \Sigma^{*}+3 \Xi^{*}-\Omega$	$1 / N_{c}^{2}$	ϵ^{3}
M_{A}			$\left(\Sigma^{*}-\Sigma\right)-\left(\Xi^{*}-\Xi\right)$	$1 / N_{c}^{2}$	-
M_{B}		$\frac{1}{3}\left(\Sigma+2 \Sigma^{*}\right)-\Lambda-\frac{2}{3}(\Delta-N)$	$1 / N_{c}^{2}$	-	
M_{C}		$-\frac{1}{4}(2 N-3 \Lambda-\Sigma+2 \Xi)+\frac{1}{4}\left(\Delta-\Sigma^{*}-\Xi^{*}+\Omega\right)$	$1 / N_{c}^{2}$	-	
M_{D}		$-\frac{1}{2}\left(\Delta-3 \Sigma^{*}+3 \Xi^{*}-\Omega\right)$	$1 / N_{c}^{2}$	-	

$$
R \equiv \frac{\sum_{i} c_{i} M_{i}}{\sum_{i}\left|c_{i}\right|}
$$

$$
\epsilon \propto m_{s}-m_{l}
$$

Large N_{c} and $\mathrm{SU}(3)$ Chiral Perturbation Theory

Jenkins, Manohar, Negele + AWL arXiv:0907.0529

Large N_{c} and $\mathrm{SU}(3)$ Chiral Perturbation Theory

Jenkins, Manohar, Negele + AWL arXiv:0907.0529

Large N_{c} and $\mathrm{SU}(3)$ Chiral Perturbation Theory

$$
R_{5} \sim \mathcal{O}\left(1 / N_{c}^{2}\right) \times \mathcal{O}(\epsilon)
$$

$$
R_{6} \sim \mathcal{O}\left(1 / N_{c}\right) \times \mathcal{O}\left(\epsilon^{2}\right)
$$

Jenkins, Manohar, Negele + AWL arXiv:0907.0529

Evidence for non-analytic light quark mass dependence arXiv:| | | 2.2658

$$
\begin{aligned}
\mathcal{L}= & i \operatorname{Tr} \bar{B}_{v}(v \cdot \mathcal{D}) B_{v}-i \bar{T}_{v}^{\mu}(v \cdot \mathcal{D}) T_{v \mu}-\frac{1}{4} \Delta_{0} \operatorname{Tr} \bar{B}_{v} B_{v}+\frac{5}{4} \Delta_{0} \bar{T}_{v}^{\mu} T_{v \mu} \\
& +2 D \operatorname{Tr}\left(\bar{B}_{v} S_{v}^{\mu}\left\{\mathcal{A}_{\mu}, B_{v}\right\}\right)+2 F \operatorname{Tr}\left(\bar{B}_{v} S_{v}^{\mu}\left[\mathcal{A}_{\mu}, B_{v}\right]\right) \\
& +\mathcal{C}\left(\bar{T}_{v}^{\mu} \mathcal{A}_{\mu} B_{v}+\bar{B}_{v} \mathcal{A}_{\mu} T_{v}^{\mu}\right)+2 \mathcal{H} \bar{T}_{v}^{\mu} S_{v}^{\nu} \mathcal{A}_{\nu} T_{v \mu} \\
& +2 \sigma_{B} \operatorname{Tr}\left(\bar{B}_{v} B_{v}\right) \operatorname{Tr} \mathcal{M}_{+}-2 \sigma_{T} \bar{T}_{v}^{\mu} T_{v} \operatorname{Tr}_{+} \\
& +2 b_{D} \operatorname{Tr}\left(\bar{B}_{v}\left\{\mathcal{M}_{+}, B_{v}\right\}\right)+2 b_{F} \operatorname{Tr}\left(\bar{B}_{v}\left[\mathcal{M}_{+}, B_{v}\right]\right)+2 b_{T} \bar{T}_{v}^{\mu} \mathcal{M}_{+} T_{v \mu}
\end{aligned}
$$

Large N_{c} expansion simplifies operators: Jenkins hep-ph/9509433

$$
\begin{array}{lll}
b_{D}=\frac{1}{4} b_{(2)}, & b_{F}=\frac{1}{2} b_{(1)}+\frac{1}{6} b_{(2)}, & b_{T}=-\frac{3}{2} b_{(1)}-\frac{5}{4} b_{(2)} \\
\sigma_{B}=\frac{1}{2} b_{(1)}+\frac{1}{12} b_{(2)}, & \sigma_{T}=\frac{1}{2} b_{(1)}+\frac{5}{12} b_{(2)} . \\
D=\frac{1}{2} a_{(1)}, & F=\frac{1}{3} a_{(1)}+\frac{1}{6} a_{(2)}, & \mathcal{C}=-2 D, \\
\mathcal{C}=-a_{(1)}, & \mathcal{H}=-\frac{3}{2} a_{(1)}-\frac{3}{2} a_{(2)} & \mathcal{H}=3 D-F .
\end{array}
$$

Evidence for non-analytic light quark mass dependence arXiv: I | | 2.2658

$$
\begin{aligned}
& \frac{3}{2} R_{1}\left(m_{l}, m_{s}\right)= \\
& \quad M_{0}-\left(\frac{3}{4} b_{(1)}+\frac{5}{24} b_{(2)}\right)\left(2 m_{l}+m_{s}\right) \\
& -\frac{1}{12}\left(35 a_{(1)}^{2}-5 a_{(2)}^{2}\right)\left(\frac{3 \mathcal{F}\left(m_{\pi}, 0, \mu\right)+4 \mathcal{F}\left(m_{K}, 0, \mu\right)+\mathcal{F}\left(m_{\eta}, 0, \mu\right)}{8(4 \pi f)^{2}}\right) \\
& -
\end{aligned} \begin{array}{r}
-\frac{1}{12} a_{(1)}^{2}\left[50\left(\frac{3 \mathcal{F}\left(m_{\pi}, \Delta, \mu\right)+4 \mathcal{F}\left(m_{K}, \Delta, \mu\right)+\mathcal{F}\left(m_{\eta}, \Delta, \mu\right)}{8(4 \pi f)^{2}}\right)\right. \\
\\
\left.a_{(1)}=0.2\left(\frac{3 \mathcal{F}\left(m_{\pi},-\Delta, \mu\right)+4 \mathcal{F}\left(m_{K},-\Delta, \mu\right)+\mathcal{F}\left(m_{\eta},-\Delta, \mu\right)}{8(4 \pi f)^{2}}\right)\right] \\
D=0.10(25)
\end{array}
$$

Evidence for non-analytic light quark mass dependence arXiv: I | | 2.2658

$$
\begin{aligned}
& R_{4} \propto\left(m_{s}-m_{l}\right) / N_{c} \\
& R_{3}\left(m_{l}, m_{s}\right)=\frac{20}{39} b_{1}\left(m_{s}-m_{l}\right)-\frac{20 a_{1}^{2}-5 a_{2}^{2}}{117} \frac{3 \mathcal{F}_{\pi}^{0}-2 \mathcal{F}_{K}^{0}-\mathcal{F}_{\eta}^{0}}{(4 \pi f)^{2}} \\
& -\frac{a_{1}^{2}}{117}\left[35 \frac{3 \mathcal{F}_{\pi}^{\Delta}-2 \mathcal{F}_{K}^{\Delta}-\mathcal{F}_{\eta}^{\Delta}}{(4 \pi f)^{2}}-\frac{3 \mathcal{F}_{\pi}^{-\Delta}-2 \mathcal{F}_{K}^{-\Delta}-\mathcal{F}_{\eta}^{-\Delta}}{(4 \pi f)^{2}}\right], \\
& R_{4}\left(m_{l}, m_{s}\right)=-\frac{5}{18} b_{2}\left(m_{s}-m_{l}\right) \\
& +\frac{a_{1}^{2}+4 a_{1} a_{2}+a_{2}^{2}}{36} \frac{3 \mathcal{F}_{\pi}^{0}-2 \mathcal{F}_{K}^{0}-\mathcal{F}_{\eta}^{0}}{(4 \pi f)^{2}}-\frac{2 a_{1}^{2}}{9} \frac{3 \mathcal{F}_{\pi}^{\Delta}-2 \mathcal{F}_{K}^{\Delta}-\mathcal{F}_{\eta}^{\Delta}}{(4 \pi f)^{2}}
\end{aligned}
$$

Evidence for non-analytic light quark mass dependence arXiv: | | | 2.2658

Fit yields

$$
b_{1}[\mathrm{NLO}]=-6.6(5), \quad b_{2}[\mathrm{NLO}]=4.3(4), \quad a_{1}[\mathrm{NLO}]=1.4(1)
$$

$$
D=0.70(5), \quad F=0.47(3), \quad C=-1.4(1), \quad H=-2.1(2)
$$

First time axial couplings left as free parameters and: values consistent with phenomenological determinations

Evidence for non-analytic light quark mass dependence arXiv: I I | 2.2658

Fit yields

$$
b_{1}[\mathrm{NLO}]=-6.6(5), \quad b_{2}[\mathrm{NLO}]=4.3(4), \quad a_{1}[\mathrm{NLO}]=1.4(1)
$$

$$
D=0.70(5), \quad F=0.47(3), \quad C=-1.4(1), \quad H=-2.1(2)
$$

but still observe large cancellations between LO and NLO

Evidence for non-analytic light quark mass dependence arXiv:| | | 2.2658
Also - I would like to draw attention to the work of Mathias Lutz and Alexandre Semke who fit the masses (not mass splittings) of 4 different lattice QCD groups, and obtained similar axial couplings

Fit i:
each fit is to set of BMW, LHPC, PACS-CS none of the fits include QCDSF-UKQCD, who computed masses in $\mathrm{SU}(3)$ limit as well as $\mathrm{SU}(3)$-broken (with similar agreement)

I do not understand - but this agreement is remarkable

Evidence for non-analytic light quark mass dependence arXiv:| | | 2.2658

Gell-Mann--Okubo Relation

Only NNLO SU(3) naturally supports strong light quark mass dependence

Evidence for non-analytic light quark mass dependence arXiv:| | | 2.2658

Gell-Mann--Okubo Relation

Combined with R3 and R4 - provides first compelling evidence of non-analytic light quark mass dependence in the baryon spectrum

Large N_{c} and $\mathrm{SU}(3)$ Chiral Perturbation Theory

Tom Degrand: arXiv:I205.0235 heroically performing quenched QCD calculations for $\mathrm{N}_{\mathrm{c}}=3,5,7$

(b) : A (constituent quark mass)

$$
M\left(N_{c}, J\right)=N_{c} A+\frac{J(J+1)}{N_{c}} B
$$

$$
(c): M\left(N_{c}, J=N_{c} / 2\right)-M\left(N_{c}, J=N_{c} / 2-1\right)
$$

Baryons in lattice QCD: Conclusions II

the more I study baryons, the more confused I get

- there now seems to be un-ignorable evidence for entirely unexpected light quark mass dependence in the nucleon (baryon) spectrum, basically down to the physical pion mass

$$
M_{N}=\alpha_{0}+\alpha_{1} m_{\pi}
$$

- combining large N_{c} with $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ flavor symmetry is showing promise - at least qualitatively
- what is clearly (still) needed is high statistics study of baryons with (with the aim of understanding chiral perturbation theory)

$$
120 \leq m_{\pi} \leq 400 \mathrm{MeV}
$$

Baryons and lattice QCD

electromagnetic self-energy of $M_{p}-M_{n}$: Cottingham Formulaself-energy related to forward Compton scatteringin principle, allows for robust, model independent determination of self-energy through dispersion theory

-

two challenges in realizing this method requires renormalization Collins Nucl.Phys. BI 49 (1979) requires subtracted dispersion integral

Harari PRL I7(I966)
Abarbanel and Nussinov Phys.Rev. 158 (1967)
\longrightarrow unknown subtraction function
AWL, Carl Carlson, Jerry Miller: PRL 108 (2012)

Baryons and lattice QCD

composition of early universe, exponentially sensitive to

 isovector nucleon mass:primordial ratio $\frac{X_{n}}{X_{p}}=e^{-\left(m_{n}-m_{p}\right) / k T}$

$$
\begin{aligned}
m_{n}-m_{p} & =1.29333217(42) \mathrm{MeV} \\
m_{n}-m_{p} & =\delta M_{n-p}^{\gamma}+\delta M_{n-p}^{m_{d}-m_{u}}
\end{aligned}
$$

this separation only
at LO in isospin breaking
$\langle N|\left(m_{d}-m_{u}\right) \bar{q} q|N\rangle \quad$ needed to renormalize EM self-energy

Baryons and lattice QCD

my original interest was to use lattice QCD calculations of

$$
m_{n}-m_{p}=\alpha\left(m_{d}-m_{u}\right)+\ldots
$$

as an independent method to determine $m_{d}-m_{u}$
However, this requires subtracting from experimental value the electromagnetic self-energy contribution

$$
\begin{aligned}
\delta M_{p-n}^{\gamma}=0.76(30) \mathrm{MeV}, & \text { Gasser and Leutwyler } \\
& \text { Nucl. Phys. B94 (1975) } \\
& \text { Phys. Rept. } 87 \text { (1982) }
\end{aligned}
$$

the uncertainty in this determination of the electromagnetic selfenergy dominates the determination of $m_{d}-m_{u}$
so lets try and improve this with modern knowledge of nucleon Compton scattering

Cini, Ferrari, Gato: PRL 2 (I959)

Cottingham:Annals Phys 25 (I963)

$T_{\mu \nu}=\frac{i}{2} \sum_{\sigma} \int d^{4} \xi e^{i q \cdot \xi}\langle p \sigma| T\left\{J_{\mu}(\xi) J_{\nu}(0)\right\}|p \sigma\rangle$

$$
\delta M^{\gamma}=\frac{i}{2 M} \frac{\alpha}{(2 \pi)^{3}} \int_{\mathbb{P}} d^{4} q \frac{T_{\mu}^{\mu}(p, q)}{q^{2}+i \epsilon}
$$

Integral diverges and must be renormalized

$$
\delta M^{\gamma}=\frac{i}{2 M} \frac{\alpha}{(2 \pi)^{3}} \int_{R} d^{4} q \frac{T_{\mu}^{\mu}(p, q)}{q^{2}+i \epsilon}
$$

- Wick rotate $\quad q^{0} \rightarrow i \nu$
variable transform $\quad Q^{2}=\mathbf{q}^{2}+\nu^{2}$

$$
\begin{align*}
& \delta M^{\gamma}=\frac{\alpha}{8 \pi^{2}} \int_{0}^{\Lambda^{2}} d Q^{2} \int_{-Q}^{+Q} d \nu \frac{\sqrt{Q^{2}-\nu^{2}}}{Q^{2}} \frac{T_{\mu}^{\mu}}{M}+\delta M^{c t}(\Lambda) \\
& T_{\mu}^{\mu}=-3 T_{1}\left(i \nu, Q^{2}\right)+\left(1-\frac{\nu^{2}}{Q^{2}}\right) T_{2}\left(i \nu, Q^{2}\right), \tag{7a}\\
&=-3 Q^{2} t_{1}\left(i \nu, Q^{2}\right)+\left(1+2 \frac{\nu^{2}}{Q^{2}}\right) Q^{2} t_{2}\left(i \nu, Q^{2}\right) . \tag{7b}
\end{align*}
$$

use dispersion integrals to evaluate scalar functions

(provided contour and infinity vanishes)

$$
T_{i}\left(\nu, Q^{2}\right)=\frac{\nu^{2}}{2 \pi} \int_{\nu_{t}}^{\infty} d \nu^{\prime} \frac{2 \nu^{\prime}}{\nu^{\prime 2}\left(\nu^{\prime 2}-\nu^{2}\right)} 2 \operatorname{Im} T_{i}\left(\nu^{\prime}+i \epsilon, Q^{2}\right)+T_{i}\left(0, Q^{2}\right)
$$

It is known that

$$
T_{2}\left(\nu, Q^{2}\right) \quad\left[t_{2}\left(\nu, Q^{2}\right)\right]
$$

satisfies unsubtracted dispersion integral while

$$
T_{1}\left(\nu, Q^{2}\right) \quad\left[t_{1}\left(\nu, Q^{2}\right)\right]
$$

requires a subtraction
Regge behavior

$$
\left.\operatorname{Im} t_{1}\left[T_{1}\right]\right|_{p-n} \propto \nu^{1 / 2}
$$

H. Harari: PRL I7 (1966)
H.D.Abarbanel S. Nussinov: Phys.Rev. I58 (1967)

Cottingham's Formula

Gasser and Leutwyler: Nucl Phys 894 (1975), Phys. Rept. 87 (1982) at the time, introducing an unknown subtraction function would be disastrous for getting a precise value: they provided an argument based upon various assumptions to avoid the subtracted dispersive integral

$$
\delta M_{p-n}^{\gamma}=0.76(30) \mathrm{MeV}
$$

central value: from elastic contribution uncertainty: estimates of inelastic structure contributions
however, one can show their arguments are incorrect: one must face the subtraction function

Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982)

$$
\begin{align*}
\delta M^{\gamma}= & \frac{\alpha}{8 \pi^{2}} \int_{0}^{\Lambda^{2}} d Q^{2} \int_{-Q}^{+Q} d \nu \frac{\sqrt{Q^{2}-\nu^{2}}}{Q^{2}} \frac{T_{\mu}^{\mu}}{M}+\delta M^{c t}(\Lambda) \\
& T_{\mu}^{\mu}=-3 T_{1}\left(i \nu, Q^{2}\right)+\left(1-\frac{\nu^{2}}{Q^{2}}\right) T_{2}\left(i \nu, Q^{2}\right) \tag{7a}\\
& =-3 Q^{2} t_{1}\left(i \nu, Q^{2}\right)+\left(1+2 \frac{\nu^{2}}{Q^{2}}\right) Q^{2} t_{2}\left(i \nu, Q^{2}\right) . \tag{7b}
\end{align*}
$$

Cottingham's Formula

$$
T_{\mu \nu}=\frac{i}{2} \sum_{\sigma} \int d^{4} \xi e^{i q \cdot \xi}\langle p \sigma| T\left\{J_{\mu}(\xi) J_{\nu}(0)\right\}|p \sigma\rangle
$$

Insert complete set of states: isolate elastic contributions

$$
1=\sum_{\Gamma}|\Gamma\rangle\langle\Gamma|
$$

$$
\begin{align*}
& \delta M_{u n s u b, a}^{e l}=\frac{\alpha}{\pi} \int_{0}^{\Lambda^{2}} d Q\left\{\left[G_{E}^{2}\left(Q^{2}\right)-2 \tau_{e l} G_{M}^{2}\left(Q^{2}\right)\right] \frac{\left(1+\tau_{e l}\right)^{3 / 2}-\tau_{e l}{ }^{3 / 2}-\frac{3}{2} \sqrt{\tau_{e l}}}{1+\tau_{e l}}-\frac{3}{2} G_{M}^{2}\left(Q^{2}\right) \frac{\tau_{e l}{ }^{3 / 2}}{1+\tau_{e l}}\right\}, \tag{8a}\\
& \delta M_{u n s u b, b}^{e l}=\frac{\alpha}{\pi} \int_{0}^{\Lambda^{2}} d Q\left\{\left[G_{E}^{2}\left(Q^{2}\right)-2 \tau_{e l} G_{M}^{2}\left(Q^{2}\right)\right] \frac{\left(1+\tau_{e l}\right)^{3 / 2}-\tau_{e l}{ }^{3 / 2}}{1+\tau_{e l}}+3 G_{M}^{2}\left(Q^{2}\right) \frac{\tau_{e l}{ }^{3 / 2}}{\left.1+\tau_{e l}\right\},}\right. \tag{8b}
\end{align*}
$$

typically quoted as elastic Cottingham

$$
\delta M^{\gamma}=\frac{\alpha}{8 \pi^{2}} \int_{0}^{\Lambda^{2}} d Q^{2} \int_{-Q}^{+Q} d \nu \frac{\sqrt{Q^{2}-\nu^{2}}}{Q^{2}} \frac{T_{\mu}^{\mu}}{M}+\delta M^{c t}(\Lambda) \begin{align*}
T_{\mu}^{\mu} & =-3 T_{1}\left(i \nu, Q^{2}\right)+\left(1-\frac{\nu^{2}}{Q^{2}}\right) T_{2}\left(i \nu, Q^{2}\right), \tag{7a}\\
& =-3 Q^{2} t_{1}\left(i \nu, Q^{2}\right)+\left(1+2 \frac{\nu^{2}}{Q^{2}}\right) Q^{2} t_{2}\left(i \nu, Q^{2}\right) .
\end{align*}
$$

One must use a subtracted dispersive integral even for elastic terms

Cottingham's Formula

perform once subtracted dispersion integral for $T_{1}\left(t_{1}\right)$ and unsubtracted dispersion integral for $T_{2}\left(t_{2}\right)$

$$
\delta M^{\gamma}=\delta M^{e l}+\delta M^{\text {inel }}+\delta M^{\text {sub }}+\delta \tilde{M}^{c t}
$$

$$
\begin{aligned}
\delta M^{e l}= & \frac{\alpha}{\pi} \int_{0}^{\Lambda_{0}^{2}} d Q\left\{\frac{3 \sqrt{\tau_{e l}} G_{M}^{2}}{2\left(1+\tau_{e l}\right)}+\frac{\left[G_{E}^{2}-2 \tau_{e l} G_{M}^{2}\right]}{1+\tau_{e l}}\left[\left(1+\tau_{e l}\right)^{3 / 2}-\tau_{e l}^{3 / 2}-\frac{3}{2} \sqrt{\tau_{e l}}\right]\right\} \\
\delta M^{i n e l}=\frac{\alpha}{\pi} \int_{0}^{\Lambda_{0}^{2}} \frac{d Q^{2}}{2 Q} \int_{\nu_{t h}}^{\infty} d \nu\left\{\frac{3 F_{1}\left(\nu, Q^{2}\right)}{M}\left[\frac{\tau^{3 / 2}-\tau \sqrt{1+\tau}+\sqrt{\tau} / 2}{\tau}\right] \quad\right. & \tau_{e l}=\frac{Q^{2}}{4 M^{2}} \\
& \left.+\frac{F_{2}\left(\nu, Q^{2}\right)}{\nu}\left[(1+\tau)^{3 / 2}-\tau^{3 / 2}-\frac{3}{2} \sqrt{\tau}\right]\right\},
\end{aligned} \tau=\frac{\nu^{2}}{Q^{2}}+1 .
$$

$\delta M^{s u b}=-\frac{3 \alpha}{16 \pi M} \int_{0}^{\Lambda_{0}^{2}} d Q^{2} T_{1}\left(0, Q^{2}\right)$,
$\delta \tilde{M}^{c t}=-\frac{3 \alpha}{16 \pi M} \int_{\Lambda_{0}^{2}}^{\Lambda_{1}^{2}} d Q^{2} \sum_{i} C_{1, i}\left\langle\mathcal{O}^{i, 0}\right\rangle, \begin{aligned} & \text { OPE: operators and Wilson coeffic. } \\ & \text { J.C. Collins: Nucl. Phys. BI49 (I 979) }\end{aligned}$

Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982) what is the flaw in the argument?

$$
\begin{aligned}
\delta M^{\gamma}= & \frac{\alpha}{8 \pi^{2}} \int_{0}^{\Lambda^{2}} d Q^{2} \int_{-Q}^{+Q} d \nu \frac{\sqrt{Q^{2}-\nu^{2}}}{Q^{2}} \frac{T_{\mu}^{\mu}}{M}+\delta M^{c t}(\Lambda) \\
& T_{\mu}^{\mu}=-3 T_{1}\left(i \nu, Q^{2}\right)+\left(1-\frac{\nu^{2}}{Q^{2}}\right) T_{2}\left(i \nu, Q^{2}\right), \\
& =-3 Q^{2} t_{1}\left(i \nu, Q^{2}\right)+\left(1+2 \frac{\nu^{2}}{Q^{2}}\right) Q^{2} t_{2}\left(i \nu, Q^{2}\right) .(7 \mathrm{~b})
\end{aligned}
$$

is there some motivation to pick t_{i} vs T_{i} ?

Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982) what is the flaw in the argument?
in the point limit (electron) $\quad t_{1}\left(\nu, Q^{2}\right)=0$!
for the nucleon (with motivated resummations) the elastic contribution is

$$
t_{1}\left(\nu, Q^{2}\right)=\frac{2}{Q^{2}}\left[\frac{Q^{4} \frac{G_{M}^{2}-G_{E}^{2}}{1+\tau}}{\left(Q^{2}-i \epsilon\right)^{2}-4 M^{2} \nu^{2}}-\left(F_{1}^{2}-\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}\right)\right]
$$

"Fixed-Pole" missed by unsubtracted dispersion relation

Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982) what is the flaw in the argument?
in the point limit (electron) $\quad t_{1}\left(\nu, Q^{2}\right)=0$!
for the nucleon (with motivated resummations) the elastic contribution is

$$
t_{1}\left(\nu, Q^{2}\right)=\frac{2}{Q^{2}}\left[\frac{Q^{4} \frac{G_{M}^{2}-G_{E}^{2}}{1+\tau}}{\left(Q^{2}-i \epsilon\right)^{2}-4 M^{2} \nu^{2}}-\left(F_{1}^{2}-\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}\right)\right]
$$

numerically, this term is negligible

Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982) what is the flaw in the argument?
in the point limit (electron) $\quad t_{1}\left(\nu, Q^{2}\right)=0$!
real problem comes in the Regge limit: Q^{2} fixed, $\nu \rightarrow \infty$

$$
\operatorname{Im} t_{1}\left(\nu, Q^{2}\right)=\frac{\pi M \nu}{Q^{4}}\left[2 x F_{1}\left(x, Q^{2}\right)-F_{2}\left(x, Q^{2}\right)\right] \quad x=\frac{Q^{2}}{2 M \nu}
$$

in the strict DIS limit: Callan-Gross relation

$$
2 x F_{1}(x)-F_{2}(x)=0
$$

Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982) what is the flaw in the argument?
in the point limit (electron) $\quad t_{1}\left(\nu, Q^{2}\right)=0$!
real problem comes in the Regge limit: Q^{2} fixed, $\nu \rightarrow \infty$
$\operatorname{Im} t_{1}\left(\nu, Q^{2}\right)=\frac{\pi N D}{Q^{4}}\left[2 x F_{1}\left(x, Q^{2}\right)-F_{2}\left(x, Q^{2}\right)\right] \quad x=\frac{Q^{2}}{2 M \nu}$

Gasser and Leutwyler assumed

$$
2 x F_{1}\left(x, Q^{2}\right)-F_{2}\left(x, Q^{2}\right)=\frac{H_{1}(x)}{\triangle(}
$$

if this were true, their argument would go through, however...

Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982) what is the flaw in the argument?
in the point limit (electron) $\quad t_{1}\left(\nu, Q^{2}\right)=0$!
real problem comes in the Regge limit: Q^{2} fixed, $\nu \rightarrow \infty$

$$
\operatorname{Im} t_{1}\left(\nu, Q^{2}\right)=\frac{\pi M \nu}{Q^{4}}\left[2 x F_{1}\left(x, Q^{2}\right)-F_{2}\left(x, Q^{2}\right)\right] \quad x=\frac{Q^{2}}{2 M \nu}
$$

Zee,Wilczek and Treiman Phys.Rev. DIO (1974)

$$
2 x F_{1}(x)-F_{2}(x)=\frac{-32}{9} \frac{\alpha_{s}\left(Q^{2}\right)}{4 \pi} F_{2}(x) \quad \text { Both IR and }
$$

This criticism first given by J.C. Collins: Nucl. Phys. BI49 (1979)

Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982) what is the flaw in the argument?
in the point limit (electron) $\quad t_{1}\left(\nu, Q^{2}\right)=0$!
real problem comes in the Regge limit: Q^{2} fixed, $\nu \rightarrow \infty$

$$
\begin{gathered}
\lim _{x \rightarrow 0} F_{2}^{p-n}(x) \propto x^{1 / 2} \quad x=\frac{Q^{2}}{2 M \nu} \\
\operatorname{Im} t_{1}^{p-n}\left(\nu, Q^{2}\right) \propto \alpha_{s}\left(Q^{2}\right) \frac{\sqrt{M \nu}}{Q^{3}}
\end{gathered}
$$

evaluation of various contributions

elastic contribution: use well measured form factors

$$
\begin{gathered}
\delta M^{e l}=\frac{\alpha}{\pi} \int_{0}^{\Lambda_{d}^{2}} d Q\left\{\frac{3 \sqrt{\tau_{e}} G_{M}^{2}}{2\left(1+\tau_{e l}\right)}+\frac{\left[G_{E}^{2}-2 \tau_{e l} G_{M}^{2}\right]}{1+\tau_{e l}}\left[\left(1+\tau_{e l}\right)^{3 / 2}-\tau_{e l}^{3 / 2}-\frac{3}{2} \sqrt{\tau_{e l}}\right]\right\} \\
\left.\delta M^{e l}\right|_{p-n}=1.39(02) \mathrm{MeV}
\end{gathered}
$$

insensitive to value of Λ_{0} since form factors fall as $1 / Q^{4}$
uncertainty from Monte Carlo evaluation of parameters describing form factors
central values: $\Lambda_{0}^{2}=2 \mathrm{GeV}^{2}$
uncertainties: $\quad 1.5 \mathrm{GeV}^{2} \leq \Lambda_{0}^{2} \leq 2.5 \mathrm{GeV}^{2}$
inelastic terms: use modern knowledge of structure functions to improve determination of inelastic contributions

$$
\begin{array}{r}
\delta M^{\text {inel }}=\frac{\alpha}{\pi} \int_{0}^{\Lambda_{0}^{2}} \frac{d Q^{2}}{2 Q} \int_{\nu_{t h}}^{\infty} d \nu\{
\end{array} \begin{array}{r}
\frac{3 F_{1}\left(\nu, Q^{2}\right)}{M}\left[\frac{\tau^{3 / 2}-\tau \sqrt{1+\tau}+\sqrt{\tau} / 2}{\tau}\right] \\
\left.+\frac{F_{2}\left(\nu, Q^{2}\right)}{\nu}\left[(1+\tau)^{3 / 2}-\tau^{3 / 2}-\frac{3}{2} \sqrt{\tau}\right]\right\} \\
\left.\delta M^{\text {inel }}\right|_{p-n}=0.057(16) \mathrm{MeV}
\end{array}
$$

contributions from two regions: resonance region Bosted and Christy: Phys.Rev. C77, C8I scaling region Capella et al: PLB 337 Sibirtsev et al: Phys. Rev. D82 uncertainty dominated by choice of transition between two regions

Cottingham's Formula

renormalization: no time to discuss properly
quark mass operator renormalizes EM self-energy: can not cleanly separate these two contributions (but mixing is higher order in isospin breaking)
summary: (J.C. Collins) with Naive Dimensional Analysis and suitable renormalization (dim. reg.) one can show the contribution from the operator is numerically second order in isospin breaking

$$
\begin{array}{ll}
\delta \tilde{M}_{p-n}^{c t}=3 \alpha \ln \left(\frac{\Lambda_{0}^{2}}{\Lambda_{1}^{2}}\right) \frac{e_{u}^{2} m_{u}-e_{d}^{2} m_{d}}{8 \pi M \delta}\langle p| \delta(\bar{u} u-\bar{d} d)|p\rangle \\
\left|\delta \tilde{M}_{p-n}^{c t}\right|<0.02 \mathrm{MeV} & 2 \delta=m_{d}-m_{u}
\end{array}
$$

Cottingham's Formula

subtraction term: most challenging part - dealing with unknown subtraction function

$$
\delta M^{\text {sub }}=-\frac{3 \alpha}{16 \pi M} \int_{0}^{\Lambda_{0}^{2}} d Q^{2} T_{1}\left(0, Q^{2}\right),
$$

- low energy: constrained by effective field theory

$$
T_{1}\left(0, Q^{2}\right)=2 \kappa(2+\kappa)-Q^{2}\left\{\frac{2}{3}\left[(1+\kappa)^{2} r_{M}^{2}-r_{E}^{2}\right]+\frac{\kappa}{M^{2}}-2 M \frac{\beta_{M}}{\alpha}\right\}+\mathcal{O}\left(Q^{4}\right),
$$

most of these contributions come from Low Energy Theorems and are "elastic" (arising from a photon striking an on-shell nucleon)
intimately related to the proton size puzzle which suffers from the same subtracted dispersive problem
K. Pachucki: Phys. Rev. A53 (I996); A. Pineda: Phys. Rev. C67 (2003); Phys. Rev. C7I (2005);
R.J. Hill, G. Paz: PRL I07 (20II); C. Carlson, M.Vanderhaeghen: Phys.Rev.A84 (20II); arXivll09.3779;
M.. Birse, J. McGovern: arXiv: I 206.3030
subtraction term: most challenging part - dealing with unknown subtraction function

$$
\delta M^{\text {sub }}=-\frac{3 \alpha}{16 \pi M} \int_{0}^{\Lambda_{0}^{2}} d Q^{2} T_{1}\left(0, Q^{2}\right),
$$

high energy: OPE (perturbative QCD) constrains

$$
\lim _{Q^{2} \rightarrow \infty} T_{1}\left(0, Q^{2}\right) \propto \frac{1}{Q^{2}}
$$

$$
T_{1}\left(0, Q^{2}\right) \simeq 2 G_{M}^{2}\left(Q^{2}\right)-2 F_{1}^{2}\left(Q^{2}\right)+Q^{2} 2 M \frac{\beta_{M}}{\alpha}\left(\frac{m_{0}^{2}}{m_{0}^{2}+Q^{2}}\right)^{2}
$$

$\mathcal{O}\left(Q^{4}\right)$ inelastic terms known
Birse and McGovern arXiv:I206.3030
subtraction term: most challenging part - dealing with unknown subtraction function

$$
\begin{array}{ll}
\delta M_{e l}^{\text {sub }}=-\frac{3 \alpha}{16 \pi M} \int_{0}^{\Lambda_{0}^{2}} d Q^{2}\left[2 G_{M}^{2}-2 F_{1}^{2}\right], & \left.\delta M_{e l}^{\text {sub }}\right|_{p-n}=-0.62 \mathrm{MeV} \\
\delta M_{\text {inel }}^{\text {sub }}=-\frac{3 \beta_{M}}{8 \pi} \int_{0}^{\Lambda_{0}^{2}} d Q^{2} Q^{2}\left(\frac{m_{0}^{2}}{m_{0}^{2}+Q^{2}}\right)^{2} & \\
\beta_{M}^{p-n}=-1.0 \pm 1.0 \times 10^{-4} \mathrm{fm}^{3} & \begin{array}{l}
\text { H.W. Griesshammer, J.A. } \\
\text { Meldmann, D.R. Phillips, G. } \\
\text { Ferog.Nucl.Part.Phys. } \\
\text { (20I2) }
\end{array}
\end{array}
$$

taking $m_{0}^{2}=0.71 \mathrm{GeV}^{2}$

$$
\left.\delta M_{\text {inel }}^{\text {sub }}\right|_{p-n}=0.47 \pm 0.47 \mathrm{MeV}
$$

adding it all up:

$$
\begin{array}{rlrl}
\left.\delta M^{\gamma}\right|_{p-n}= & +1.39(02) \\
& -0.62(02) & =0.77(03) \mathrm{MeV} \quad \begin{array}{l}
\text { elastic } \\
\text { terms }
\end{array} \\
& +0.057(16) & & \text { inelastic terms } \\
& +0.47(47) \mathrm{MeV} & & \text { unknown subtraction term } \\
= & 1.30(03)(47) \mathrm{MeV} & &
\end{array}
$$

recall the fixed pole in the elastic contribution makes a negligible contribtion

Cottingham's Formula

adding it all up:

$$
\begin{array}{rlrl}
\left.\delta M^{\gamma}\right|_{p-n} & =1.30(03)(47) \mathrm{MeV} & \begin{array}{l}
\text { AWL, C.Carlson, G.Miller: } \\
\\
\end{array} & \begin{array}{ll}
\text { PRL } 108 \text { (2012) }
\end{array} \\
& & \text { J. Gasser and H. Leutwyler: } \\
& \text { Nucl Phys B94 (1975) }
\end{array}
$$

We reduced the uncertainty from structure by an order of magnitude! But we uncovered an oversight that dominates the uncertainty :(
adding it all up:

$$
\begin{array}{rlrl}
\left.\delta M^{\gamma}\right|_{p-n} & =1.30(03)(47) \mathrm{MeV} & \begin{array}{l}
\text { AWL, C.Carlson, G.Miller: } \\
\\
\end{array} & =0.76(30) \mathrm{MeV} \\
& & \text { J. Gasser and H. Leutwyler: } \\
& \text { Nucl Phys B94 (1975) }
\end{array}
$$

expectation from experiment + lattice QCD

$$
\begin{aligned}
\left.\delta M^{\gamma}\right|_{p-n} & =-1.29333217(42)+2.53(40) \mathrm{MeV} \\
& =1.24(40) \mathrm{MeV}
\end{aligned}
$$

average of 3 independent lattice results

Baryons and lattice QCD: Conclusions

attempt to improve the old determination of nucleon iso-vector EM self-energy uncovered an oversight

- no avoiding the subtraction (dispersion integral)
modeling was necessary to control uncertainty subtraction function

0
a central value was found in much better agreement with expectations from lattice QCD + experiment

- comparison with independent determinations of iso-vector nucleon magnetic polarizability show the modeling is not crazy
improvements will come from three areas
- improved measurement of $\quad \beta_{M}^{p-n}$
lattice QCD calculation of $\quad \beta_{M}^{p-n}$ including EM effects with lattice QCD:

Fin

