

Kaon decays at NA48: recent results and perspectives

Andrea Bizzeti

University of Modena e Reggio Emilia and I.N.F.N. Sezione di Firenze, Italy

on behalf of the NA48/2 collaboration

7th International Workshop on Chiral Dynamics

Newport News, VA, USA — August 6-10, 2012

Outline

The NA48 experiment at CERN SPS

 $K^{\pm} \rightarrow \pi \pi e^{\pm} \nu$ (K_{e4}), $\pi \pi$ scattering lengths, $K_{\mu4}$

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: new result (NA48/2 +NA62)

 $K^\pm \to \pi^\pm \pi^0 \gamma^{(*)}$: first observation of $K^\pm \to \pi^\pm \pi^0 e^+ e^-$

 $K^{\pm} \rightarrow \pi^{\pm} l^+ l^-$: recent results on $K^{\pm} \rightarrow \pi^{\pm} \mu^+ \mu^-$

Conclusions

The NA48 experiment at CERN SPS

 $K^{\pm} \rightarrow \pi \pi e^{\pm} \nu (K_{e4}), \pi \pi$ scattering lengths, $K_{\mu 4}$

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: new result (NA48/2 +NA62)

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{(*)}$: first observation of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$

 $K^{\pm} \rightarrow \pi^{\pm} l^+ l^-$: recent results on $K^{\pm} \rightarrow \pi^{\pm} \mu^+ \mu^-$

Conclusions

The NA48 experiment at CERN SPS

The NA48 experiment NA48/2: Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

NA62: Birmingham, Bratislava, Bristol, CERN, Dubna, Fairfax, Ferrara, Firenze, Frascati, Glasgow, IHEP Protvino, INR Moscow, Liverpool, Louvain-La-Neuve, Mainz, Merced, Napoli, Perugia, Pisa, Prague, Roma I, Roma II, Saclay, San Luis Potosì, Stanford, Sofia, Torino, TRIUMF

$$\begin{array}{l} \text{NA48:} \\ \text{if ect CPV} \\ (\varepsilon'/\varepsilon) \end{array} \begin{cases} 1997 : K_L + K_S \\ 1998 : K_L + K_S \\ 1999 : K_L + K_S ; K_S \text{ HI} \\ 2000 : K_L \text{ only } ; K_S \text{ HI} \\ 2001 : K_L + K_S ; K_S \text{ HI} \end{cases} \\ \text{NA48/1} \begin{cases} 2002 : K_S / \text{hyperons} \\ 2003 : K^+ + K^- \\ 2004 : K^+ + K^- \end{cases} \\ \text{NA62}(R_K) \begin{cases} 2007 : K^+ + K^- \\ 2008 : K^+ + K^- \end{cases} \\ (K_{e2}/K_{\mu2}) \\ \text{NA62} \end{cases} \\ \begin{array}{l} 2014 : K^+ \quad (\rightarrow \pi^+ \nu \, \bar{\nu}) \\ \dots \end{cases} \end{cases}$$

High statistics for rare Kaon decays

The NA48/2 beams (2003–2004)

- ▶ 400 GeV/c SPS protons \Rightarrow unseparated secondary charged beam ($\approx 5\%$ kaons)
- ► 60 GeV/c (\pm 3.8% rms) simultaneous K^+ and K^- beams ($K^+/K^- \simeq 1.8$) \Rightarrow large charge symmetrization of experimental conditions
- $\sim 4 \text{ mm} \times 4 \text{ mm}, \sim 10 \,\mu\text{rad} \times 10 \,\mu\text{rad} (\text{rms})$
- ▶ 22% of kaons decay in the 114 m long vacuum tank.

The NA48/2 detectors

Detectors:

- Magnetic spectrometer (4 DCH) 4 views/DCH: redundancy \Rightarrow efficiency $\sigma_p/p = 1.02\% \oplus 0.044\% * p$ [GeV/c]
 - ► LKr electromagnetic calorimeter: quasi-homogeneous, high granularity $\frac{\sigma_E}{E} = \frac{3.2\%}{E^{1/2}} \oplus \frac{9\%}{E} \oplus 0.42\%$ [GeV]

 \Rightarrow e/ π discrimination (E/p)

- Scintillator hodoscope for charged fast trigger: σ(t) = 150 ps
- hadron calorimeter
- muon counters
- photon vetos

The NA48 experiment at CERN SPS

$K^{\pm} \rightarrow \pi \pi e^{\pm} \nu (K_{e4}), \pi \pi$ scattering lengths, $K_{\mu 4}$

$$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$$
: new result (NA48/2 +NA62)

$$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{(*)}$$
: first observation of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$

$$K^{\pm} \to \pi^{\pm} l^+ l^-$$
: recent results on $K^{\pm} \to \pi^{\pm} \mu^+ \mu^-$

Conclusions

Ke4 decays

 $K^{\pm} \to \pi^{+} \pi^{-} e^{\pm} \nu , \quad \text{called } K_{e4}(+-) \quad - \quad \text{charged mode}$ $K^{\pm} \to \pi^{0} \pi^{0} e^{\pm} \nu , \quad \text{called } K_{e4}(00) \quad - \quad \text{neutral mode}$

Five kinematic variables (Cabibbo-Maksymowicz 1965):

$$s_{\pi} = M_{\pi\pi}^2, \qquad s_e = M_{e\nu}^2, \qquad \cos \theta_{\pi}, \qquad \cos \theta_e, \qquad \phi$$

Form factors: formalism of K_{e4} decay

K_{e4} hadronic current is described by form factors

 \rightarrow Partial Wave expansion, limited to S and P waves [Pais-Treiman (1968) + Watson theorem (T invariance)]

Partial Wave expansion:

2 Axial Form Factors (F and G): $F = F_s e^{i\delta_s} + F_p e^{i\delta_p} \cos \theta_{\pi}$ $G = G_p e^{i\delta_p}$

1 Vector Form Factor (*H*): $H = H_p e^{i\delta_p}$

The fit parameters (real) are: (+-) $\overline{F_s, F_p, G_p}, H_p, \delta = \delta_s - \delta_p$

(00) F_s only (no P-wave)

 $\frac{q^2}{\text{fitted in } q^2}$ dependence can be studied from FF fitted in q^2 bins [J.Phys. G **26**, 1607 (1999)]

$$F_s^2 = f_s^2 \left[1 + \frac{f_s'}{f_s} q^2 + \frac{f_{s'}'}{f_s} q^4 + \frac{f_e'}{f_s} \left(\frac{M_{e\nu}^2}{4m_{\pi}^2} \right)^2 \right]^2$$
$$\frac{G_p}{f_s} = \frac{g_p}{f_s} + \frac{g_p'}{f_s} q^2 , \quad F_p = f_p , \quad H_p = h_p$$
$$q^2 = \left[\frac{M_{\pi\pi}^2}{4m^2} - 1 \right] \qquad m_{\pi} = m(\pi^{\pm})$$

Ke4(+-) decay: Event selection and background rejection

Signal $(\pi^+\pi^-e^\pm\nu)$ topology:

- 3 charged tracks, forming a good vertex
- 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

Ke4(+-) decay: Event selection and background rejection

Signal $(\pi^+\pi^-e^\pm\nu)$ topology:

- 3 charged tracks, forming a good vertex
- 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

Background main sources (suppressed by specific cuts):

$$K^+ \to \pi^+ \pi^- \pi^+ \qquad (\pi^+ \to e^+ \nu \quad \text{or} \quad \pi^+ \text{ mis-ID})$$

$$K^+ \to \pi^+ \pi^0 \qquad (\pi^0 \to e^+ e^- \gamma \text{ and } e^- \text{ mis-ID})$$

Ke4(+-) decay: Event selection and background rejection

Signal $(\pi^+\pi^-e^\pm\nu)$ topology:

- 3 charged tracks, forming a good vertex
- 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

Background main sources (suppressed by specific cuts):

$$K^+ \to \pi^+ \pi^- \pi^+ \qquad (\pi^+ \to e^+ \nu \quad \text{or} \quad \pi^+ \text{ mis-ID})$$

$$K^+ \to \pi^+ \pi^0 \qquad (\pi^0 \to e^+ e^- \gamma \text{ and } e^- \text{ mis-ID})$$

Background control sample from data (assuming $\Delta S = \Delta Q$):

•
$$\pi^{\pm}\pi^{\pm}e^{\mp}\nu$$
 ("Wrong-Sign" events)

Ke4(+-) decay: Event selection and background rejection

Signal $(\pi^+\pi^-e^\pm\nu)$ topology:

- 3 charged tracks, forming a good vertex
- 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

Background main sources (suppressed by specific cuts):

$$K^+ \to \pi^+ \pi^- \pi^+ \qquad (\pi^+ \to e^+ \nu \quad \text{or} \quad \pi^+ \text{ mis-ID})$$

$$K^+ \to \pi^+ \pi^0 \qquad (\pi^0 \to e^+ e^- \gamma \text{ and } e^- \text{ mis-ID})$$

Background control sample from data (assuming $\Delta S = \Delta Q$):

- $\pi^{\pm}\pi^{\pm}e^{\mp}\nu$ ("Wrong-Sign" events)
- Ratio "Right-Sign" : "Wrong-Sign" =

2:1 if coming from $K_{3\pi}$ (dominant) 1:1 if coming from $K_{3\pi}$

1:1 if coming from $K_{2\pi}$

Ke4(+-) decay: background rejection

Data sample: 1.1×10^6 events. Total background is less than 1%

 $K^{\pm} \rightarrow \pi \pi e^{\pm} \nu (K_{e4}), \pi \pi$ scattering lengths, $K_{\mu 4}$

Ke4(+-) relative Form Factors: fit results

$$F_s^2 = f_s^2 \left[1 + \frac{f_s'}{f_s} q^2 + \frac{f_s''}{f_s} q^4 + \frac{f_e'}{f_s} \frac{M_{e\nu}^2}{4m_{\pi}^2} \right]^2 \quad ; \quad \frac{G_p}{f_s} = \frac{g_p}{f_s} + \frac{g_p'}{f_s} q^2$$

$$\frac{F_p}{f_s} = \frac{f_p}{f_s} \quad ; \quad \frac{H_p}{f_s} = \frac{h_p}{f_s}$$

Systematics:

- mostly from background
 + acceptance control
- comparable or smaller than statistical error

Total statistics (2003+2004)

	value	stat	syst
f_s'/f_s	0.152	± 0.007	± 0.005
f_s''/f_s	-0.073	± 0.007	± 0.006
f'_e/f_s	0.068	± 0.006	± 0.007
f_p/f_s	-0.048	± 0.003	± 0.004
g_p/f_s	0.868	± 0.010	± 0.010
g'_p/f_s	0.089	± 0.017	± 0.013
h_p/f_s	-0.398	± 0.015	± 0.008

 \rightarrow Published in Eur. Phys J. C70 (2010) 635

Ke4(+-) decay: branching fraction

$$\frac{K_{e4}^{\pm}(+-)}{\text{PDG: } (4.09 \pm 0.10) \times 10^{-5}}$$
$$\text{BR}(K_{e4}^{\pm}) = \frac{(N_s - N_b)}{N_n} \frac{A_n \varepsilon_n}{A_s \varepsilon_s} \text{BR}(K_{3\pi}^{\pm})$$

• Use
$$\pi^{\pm}\pi^{+}\pi^{-}$$
 decays as normalization

- ▶ N_s , N_b , N_n : number of signal (1.11×10^6) , background $(0.95\% \text{ of } K_{e4})$ and normalization (1.9×10^9) events
- A_s , A_n , $\varepsilon_s \varepsilon_n$: signal and normalization acceptance (18.16% and 23.97%) and trigger efficiency (98.5% and 97.7%)

• BR
$$(K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = (5.59 \pm 0.04)\%$$

Ke4(+-) decay: branching fraction

• Use $\pi^{\pm}\pi^{+}\pi^{-}$ decays as normalization

- ► N_s , N_b , N_n : number of signal (1.11 × 10⁶), background (0.95% of K_{e4}) and normalization (1.9 × 10⁹) events
- A_s , A_n , $\varepsilon_s \varepsilon_n$: signal and normalization acceptance (18.16% and 23.97%) and trigger efficiency (98.5% and 97.7%)

• BR
$$(K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = (5.59 \pm 0.04)\%$$

$$K_{e4}^{\pm}(+-) \quad PDG: \ (4.09 \pm 0.10) \times 10^{-5}$$
$$BR(K_{e4}^{\pm}) = \frac{(N_s - N_b)}{N_n} \frac{A_n \varepsilon_n}{A_s \varepsilon_s} BR(K_{3\pi}^{\pm})$$
$$(K^+, \circ K^- \text{ (first measurement)})$$

 $K_{e4}^{\pm}(+-)$ | PDG: (4.09 ± 0.10) × 10⁻⁵

 $BR(K_{e4}^{\pm}) = \frac{(N_s - N_b)}{N_n} \frac{A_n \varepsilon_n}{A_s \varepsilon_s} BR(K_{3\pi}^{\pm})$

Relative Systematic Uncertainty

 $^{\checkmark} \bullet K^+$, $\circ K^-$ (first measurement)

Ke4(+-) decay: branching fraction

• Use $\pi^{\pm}\pi^{+}\pi^{-}$ decays as normalization

- ▶ N_s , N_b , N_n : number of signal (1.11 × 10⁶), background (0.95% of K_{e4}) and normalization (1.9 × 10⁹) events
- A_s , A_n , $\varepsilon_s \varepsilon_n$: signal and normalization acceptance (18.16% and 23.97%) and trigger efficiency (98.5% and 97.7%)
- BR $(K^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = (5.59 \pm 0.04)\%$

Thew result

arxiv:1206.7065[hep-ex]; PLB (2012), in the press http://dx.doi.org/10.1016/j.physletb.2012.07.048

 $BR(K_{e4}^+) = (4.255 \pm 0.008) \times 10^{-5}; BR(K_{e4}^-) = (4.261 \pm 0.011) \times 10^{-5}$

 $BR[K_{e4}^{\pm}(+-)] = (4.257 \pm 0.004_{stat} \pm 0.016_{syst} \pm 0.031_{ext}) \times 10^{-5}$

(%)

5	-	· · ·
Acceptance, beam geom.		0.18
Muon vetoing		0.16
Accidental activity		0.21
Particle ID		0.09
Background		0.07
Radiative effects		0.08
Trigger efficiency		0.11
Simulation statistics		0.05
Total systematics		0.37
External error $[BR(K_{3\pi})]$		0.72

Ke4(00) BR measurement: event reconstruction

 $K^{\pm} \to \pi^0 \pi^0 e^{\pm} \nu$ relative to $K^{\pm} \to \pi^0 \pi^0 \pi^{\pm}$, BR=(1.761 ± 0.022)%

Common event reconstruction for $(\pi^0 \pi^0 + \text{charged track})$:

Find γ cluster pairs 1(ab) and 2(cd) and:

- 1) derive vertex positions Z_1 , Z_2 using π^0 mass constraint:
 - $Z_1 = Z(LKr) \frac{1}{m(\pi^0)}D(ab)\sqrt{E_aE_b}$ $Z_2 = Z(LKr) \frac{1}{m(\pi^0)}D(cd)\sqrt{E_cE_d}$

2) require:

- ▶ $|Z_1 Z_2| < 5 \,\mathrm{m}$
- $Z_n = \frac{1}{2}(Z_1 + Z_2)$ within fiducial volume
- 3) combine with a charged track if Z_3 (CDA to beam line) satisfies $|Z_3 Z_n| < 8$ m

up to now: no PID

Ke4(00) BR measurement: signal selection

- Assign m_{π} to the charged track, plot P_t (to beam axis) vs invariant mass
- elliptic cut separates ~ $70\,000\,000\,K_{3\pi}$ from ~ $45\,000\,K_{e4}$ candidates

• electron identification: E/p and shower properties

A. Bizzeti

Recent results from NA48

Newport News, 06-08-2012

Ke4(00) decay: branching fraction

$$\frac{K_{e\,4}^{\pm}(00)}{\mathrm{BR}(K_{e\,4}^{\pm})} = \frac{(N_s - N_b)}{N_n} \frac{A_n \varepsilon_n}{A_s \varepsilon_s} \mathrm{BR}(K_{3\pi}^{\pm})$$

- Use $\pi^{\pm}\pi^{0}\pi^{0}$ decays as normalization
- ▶ N_s, N_b, N_n : number of signal (44 909), background (1.3% of K_{e4}) and normalization (71 × 10⁶) events
- A_s , A_n , $\varepsilon_s \varepsilon_n$: signal and normalization acceptance (1.77% and 4.11%) and both trigger efficiencies in the range 92-98%

• BR
$$(K^{\pm} \to \pi^{\pm} \pi^0 \pi^0) = (1.761 \pm 0.022)\%$$

Ke4(00) decay: branching fraction

• Use $\pi^{\pm}\pi^{0}\pi^{0}$ decays as normalization

- ▶ N_s, N_b, N_n : number of signal (44 909), background (1.3% of K_{e4}) and normalization (71 × 10⁶) events
- A_s , A_n , $\varepsilon_s \varepsilon_n$: signal and normalization acceptance (1.77% and 4.11%) and both trigger efficiencies in the range 92-98%

• BR
$$(K^{\pm} \to \pi^{\pm} \pi^0 \pi^0) = (1.761 \pm 0.022)\%$$

$$\begin{array}{l} \overset{\pm}{\operatorname{PDG:}} (2.2 \pm 0.4) \times 10^{-5} \\ \mathrm{BR}(K_{e4}^{\pm}) = \frac{(N_s - N_b)}{N_n} \frac{A_n \varepsilon_n}{A_s \varepsilon_s} \mathrm{BR}(K_{3\pi}^{\pm}) \end{array}$$

k

Relative Systematic Uncertainty	(%)
Background	0.35
Simulation statistics	0.12
Form factor dependence	0.20
Radiative effects	0.23
Trigger efficiency	0.80
Particle ID	0.10
Beam geometry	0.10
Total systematics	0.94
External error $[BR(K_{3\pi})]$	1.25

Ke4(00) decay: branching fraction

• Use $\pi^{\pm}\pi^{0}\pi^{0}$ decays as normalization

- N_s, N_b, N_n : number of signal (44 909), background (1.3% of K_{e4}) and normalization (71 × 10⁶) events
- A_s , A_n , $\varepsilon_s \varepsilon_n$: signal and normalization acceptance (1.77% and 4.11%) and both trigger efficiencies in the range 92-98%

• BR
$$(K^{\pm} \to \pi^{\pm} \pi^0 \pi^0) = (1.761 \pm 0.022)\%$$

$$\begin{array}{l} \overset{\pm}{\operatorname{PDG:}} (2.2 \pm 0.4) \times 10^{-5} \\ \mathrm{BR}(K_{e4}^{\pm}) = \frac{(N_s - N_b)}{N_n} \frac{A_n \varepsilon_n}{A_s \varepsilon_s} \mathrm{BR}(K_{3\pi}^{\pm}) \end{array}$$

Relative Systematic Uncertainty	(%)
Background	0.35
Simulation statistics	0.12
Form factor dependence	0.20
Radiative effects	0.23
Trigger efficiency	0.80
Particle ID	0.10
Beam geometry	0.10
Total systematics	0.94
External error $[BR(K_{3\pi})]$	1.25

Preliminary result – analysis in progress

 $BR[K_{e4}^{\pm}(00)] = (2.595 \pm 0.012_{stat} \pm 0.024_{syst} \pm 0.032_{ext}) \times 10^{-5}$

k

Ke4 decay: Form Factors variation

Ke4 decay: Form Factors variation

$$K_{e\,4}^{\pm}(+-)$$
 "charged" mode
 $q^{2} = \frac{M_{\pi\pi}^{2}}{4\,m_{\pi}^{2}} - 1$, $m_{\pi} = m(\pi^{+})$

 $K_{e4}^{\pm}(00)$ "neutral" mode blue line = polynomial fit ($q^2 > 0$) red line = extrapolation from fit + negative interference with $\pi\pi$ rescattering New! using known values of a_0 and a_2

Ke4(+-): absolute Form Factors

 $BR \rightarrow$ overall form factor normalization:

$$K_{e\,4}^{\pm}(+-)$$

$$f_s = 5.705 \pm 0.003_{\text{stat}} \pm 0.017_{\text{syst}} \pm 0.031_{\text{ext}}$$
$$= 5.705 \pm 0.035_{\text{norm}}$$

$$\begin{array}{ll} f_s' &=& 0.867 \pm 0.040_{\rm stat} \pm 0.029_{\rm syst} \pm 0.005_{\rm norm} \\ f_s'' &=& -0.416 \pm 0.040_{\rm stat} \pm 0.034_{\rm syst} \pm 0.003_{\rm norm} \\ f_e' &=& 0.388 \pm 0.034_{\rm stat} \pm 0.040_{\rm syst} \pm 0.002_{\rm norm} \\ f_p &=& -0.274 \pm 0.017_{\rm stat} \pm 0.023_{\rm syst} \pm 0.002_{\rm norm} \end{array}$$

$$h_p = -2.271 \pm 0.086_{\text{stat}} \pm 0.046_{\text{syst}} \pm 0.014_{\text{norm}}$$

PLB (2012), in the press http://dx.doi.org/10.1016/j.physletb.2012.07.048

Ke4(+-) decay and $\pi\pi$ scattering lengths

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT :

$$a_0 = (0.220 \pm 0.005) \times (1/m_\pi)$$

 $a_2 = (-0.0444 \pm 0.0010) \times (1/m_\pi)$

[Colangelo, Gasser, Leutwyler,

Nucl. Phys. B 603, 125 (2001); Phys. Rev. Lett. 86, 5008 (2001)]

Ke4(+-) decay and $\pi\pi$ scattering lengths

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008].

Ke4(+-) decay and $\pi\pi$ scattering lengths

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008].

Two statistically independent measurements by NA48/2:

1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s - \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]

Ke4(+-) decay and $\pi\pi$ scattering lengths

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008].

- 1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]
- 2. from the "cusp" in $M^2(\pi^0\pi^0)$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]

Ke4(+-) decay and $\pi\pi$ scattering lengths

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008].

- 1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]
- 2. from the "cusp" in $M^2(\pi^0\pi^0)$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]

Ke4(+-) decay and $\pi\pi$ scattering lengths

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008].

- 1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]
- 2. from the "cusp" in $M(\pi^0\pi^0)$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]

Ke4(+-) decay and $\pi\pi$ scattering lengths

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008].

- 1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]
- 2. from the "cusp" in $M(\pi^0\pi^0)$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]

Ke4(+-) decay and $\pi\pi$ scattering lengths

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008].

- 1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]
- 2. from the "cusp" in $M(\pi^0\pi^0)$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]

Ke4(+-) decay and $\pi\pi$ scattering lengths

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008].

- 1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]
- 2. from the "cusp" in $M(\pi^0\pi^0)$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]
- Different systematics: eletron misID and background vs. calorimeter and trigger
- Different theoretical inputs: Roy equations and isospin breaking correction vs. rescattering in final state and ChPT expansion
- Large overlap in the a_0, a_2 plane
- Impressive agreement with ChPT

K μ 4 decays: status and perspectives

- Poor experimental knowledge
- Similar to K_{e4} , with one more vector form factor (*R*)
- ► FF and BR predicted by ChPT [NPB427(1994)427]

 $K^{\pm}_{\mu 4}(0\,0)$:

- Never observed so far
- ▶ few 10³ events expected in NA48/2 data
- ► Goal: first observation, measure BR

 $K^{\pm}_{\mu4}(+-)$:

- Measured BR = $(1.4 \pm 0.9) \times 10^{-5}$ from 9 events [PDG]
- ► Predicted BR = $(0.412 \pm 0.018) \times 10^{-5}$ [NPB427(1994)427]
- several 10^3 events expected in NA48/2 data
- ► Goal: measure BR + first attempt to measure *R* form factor

$$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$$
: new result (NA48/2+NA62)

The NA48 experiment at CERN SPS

$$K^{\pm} \rightarrow \pi \pi e^{\pm} \nu (K_{e4}), \pi \pi$$
 scattering lengths, $K_{\mu 4}$

$$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$$
: new result (NA48/2 +NA62)

$$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{(*)}$$
: first observation of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$

$$K^{\pm} \to \pi^{\pm} l^+ l^-$$
: recent results on $K^{\pm} \to \pi^{\pm} \mu^+ \mu^-$

Conclusions

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: new result (NA48/2+NA62)

The $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ rare decay

Detailed ChPT predictions:

- leading contribution at O(p⁴), important corrections at O(p⁶)
 [D'Ambrosio, Portoles, PLB 386 (1996) 403]
- spectrum and rate predicted as a function of an unknown parameter \hat{c}

$$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{(*)}$$
: first observation of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$

The NA48 experiment at CERN SPS

 $K^{\pm} \rightarrow \pi \pi e^{\pm} \nu (K_{e4}), \pi \pi$ scattering lengths, $K_{\mu 4}$

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: new result (NA48/2 +NA62)

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{(*)}$: first observation of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$

 $K^{\pm} \rightarrow \pi^{\pm} l^+ l^-$: recent results on $K^{\pm} \rightarrow \pi^{\pm} \mu^+ \mu^-$

Conclusions

$K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$: Theory

$$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{(*)}$$
: first observation of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$

Two sources of γ radiation:

Inner Bremsstrahlung (IB) and Direct Emission (DE)

Two kinematic variables:

 $T_{\pi}^{*} = \pi^{\pm} \text{ kinetic energy}$ in K^{\pm} rest frame $W^{2} = \frac{(p_{\pi} \cdot p_{\gamma})(p_{K} \cdot p_{\gamma})}{(p_{K} \cdot p_{\gamma})}$

$$=\frac{(r\pi - r\gamma)(r\pi - r\gamma)}{m_K^2 m_\pi^2}$$

After integrating on T_{π}^* :

$$\frac{d\Gamma^{\pm}}{dW} = \frac{d\Gamma_{IB}^{\pm}}{dW} \begin{bmatrix} 1 & \Leftarrow (IB) \\ + 2m_K^2 m_\pi^2 \cos(\pm\phi + \delta_1^1 - \delta_0^2) X_E W^2 & \Leftarrow (INT) \\ + m_K^4 m_\pi^4 \left(|X_E|^2 + |X_M|^2 \right) W^4 \end{bmatrix} \quad \Leftarrow (DE)$$

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{(*): \text{ first observation of } K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}}$ $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma: \text{ NA48/2 results}$ $\frac{d\Gamma^{\pm}}{dW} = \frac{d\Gamma_{IB}^{\pm}}{dW} \begin{bmatrix} 1 & \Leftarrow (\text{IB}) \\ + 2m_{K}^{2} m_{\pi}^{2} \cos(\pm \phi + \delta_{1}^{1} - \delta_{0}^{2}) X_{E} W^{2} & \Leftarrow (\text{INT}) \\ + m_{K}^{4} m_{\pi}^{4} \left(|X_{E}|^{2} + |X_{M}|^{2} \right) W^{4} \end{bmatrix} \quad \Leftarrow (\text{DE})$

IB is known from $K^{\pm} \to \pi^{\pm}\pi^{0}$ (Low theorem) + QED corrections DE amplitude contains electric X_{E} and magnetic X_{M} dipole terms INT is interference between IB and electric DE (X_{E}) amplitudes $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{(*): \text{ first observation of } K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}}$ $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma: \text{ NA48/2 results}$ $\frac{d\Gamma^{\pm}}{dW} = \frac{d\Gamma_{IB}^{\pm}}{dW} \begin{bmatrix} 1 & \Leftarrow (\text{IB}) \\ + 2m_{K}^{2} m_{\pi}^{2} \cos(\pm \phi + \delta_{1}^{1} - \delta_{0}^{2}) X_{E} W^{2} & \Leftarrow (\text{INT}) \\ + m_{K}^{4} m_{\pi}^{4} \left(|X_{E}|^{2} + |X_{M}|^{2} \right) W^{4} \end{bmatrix} \quad \Leftarrow (\text{DE})$

IBis known from $K^{\pm} \to \pi^{\pm}\pi^{0}$ (Low theorem) + QED correctionsDEamplitude contains electric X_{E} and magnetic X_{M} dipole termsINTis interference between IB and electric DE (X_{E}) amplitudes

NA48/2 (0 < T_{π}^* < 80 MeV): > 10⁶ events, < 0.01% background

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{(*): \text{ first observation of } K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}}$ $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma: \text{ NA48/2 results}$ $\frac{d\Gamma^{\pm}}{dW} = \frac{d\Gamma_{IB}^{\pm}}{dW} \begin{bmatrix} 1 & \Leftarrow (\text{IB}) \\ + 2m_{K}^{2} m_{\pi}^{2} \cos(\pm \phi + \delta_{1}^{1} - \delta_{0}^{2}) X_{E} W^{2} & \Leftarrow (\text{INT}) \\ + m_{K}^{4} m_{\pi}^{4} \left(|X_{E}|^{2} + |X_{M}|^{2} \right) W^{4} \end{bmatrix} \quad \Leftarrow (\text{DE})$

IBis known from $K^{\pm} \to \pi^{\pm}\pi^{0}$ (Low theorem) + QED correctionsDEamplitude contains electric X_{E} and magnetic X_{M} dipole termsINTis interference between IB and electric DE (X_{E}) amplitudes

NA48/2 (0 < T_{π}^* < 80 MeV): > 10⁶ events, < 0.01% background

Final NA48/2 results:

- Frac(DE) = $(3.19 \pm 0.16) \cdot 10^{-2}$
- Frac(INT) = $(-2.21 \pm 0.41) \cdot 10^{-2}$

► $A_{CP} = \left| \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-} \right| < 1.5 \cdot 10^{-3}$ (90% CL) \leftarrow first measurement

A. Bizzeti

[EPJC68 (2010) 75]

 \leftarrow first evidence

$$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{(*)}$$
: first observation of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$

$K^{\pm} ightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$

- Mainly from $K^{\pm} \to \pi^{\pm} \pi^0 \gamma^* \to \pi^{\pm} \pi^{\pm} e^+ e^-$ [EPJC 72, 187 (2012)]
- DE and INT depend on X_E and X_M form factors
- Short distance contributions, sensitive to New physics

NA48/2: first observation of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$

 $\pi^{\pm}\pi^{0}e^{+}e^{-}$ invariant mass

$$K^{\pm} \rightarrow \pi^{\pm} l^{+} l^{-}$$
: recent results on $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

The NA48 experiment at CERN SPS

$$K^{\pm} \rightarrow \pi \pi e^{\pm} \nu (K_{e4}), \pi \pi$$
 scattering lengths, $K_{\mu 4}$

$$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$$
: new result (NA48/2 +NA62)

$$K^{\pm} \to \pi^{\pm} \pi^0 \gamma^{(*)}$$
: first observation of $K^{\pm} \to \pi^{\pm} \pi^0 e^+ e^-$

$$K^{\pm} \rightarrow \pi^{\pm} l^{+} l^{-}$$
: recent results on $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

Conclusions

$$K^{\pm} \rightarrow \pi^{\pm} l^{+} l^{-}$$
: recent results on $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

 $K^{\pm} \rightarrow \pi^{\pm} l^+ l^-$: theory

$$\frac{K^{\pm} \to \pi^{\pm} e^{+} e^{-}}{\text{Suppressed } (BR \approx 10^{-7}) \text{ FCNC processes}} \xrightarrow{\pi}_{\pi}$$

$$\frac{K}{\pi}$$

$$\frac{d\Gamma}{dz} = P(z) \cdot |W(z)|^2 \quad ; \qquad z = \left(\frac{m_{ll}}{m_K}\right)^2 \quad ; \quad P(z) = \text{ phase space factor}$$

<u>Several models</u> exist for W(z) form factor

- Linear: $W(z) = G_F m_K^2 f_0 (1 + \delta \cdot z)$
- ChPT $\mathcal{O}(p^6)$: $W(z) = G_F m_K^2 (a_+ + b_+ z) + W^{\pi\pi}(z)$ [JHEP 8, 4 (1998)]
- ChPT + large- N_C QCD: $W(z) = W(\tilde{w}, \beta, z)$ [PLB 595, 301 (2004)]
- "Dubna" ChPT: $W(z) = W(M_a, M_{\rho}, z)$ [hep-ph/0611175]

 $K^{\pm} \rightarrow \pi^{\pm} l^+ l^-$: recent results on $K^{\pm} \rightarrow \pi^{\pm} \mu^+ \mu^-$

$K^{\pm} \rightarrow \pi^{\pm} l^+ l^-$: NA48/2 data analysis

Event selection (2003+2004 data)

- 3 tracks, 1 vertex, total charge $= \pm 1$
- ▶ $|\vec{p}|, p_T$ consistent with $K^{\pm} \rightarrow 3$ charged particles
- Use E_{LKr}/p for Particle ID $(e^{\pm} \text{ vs } \mu^{\pm}, \pi^{\pm})$
- ► $K_{\pi ee}$: z > 0.08 ($m_{ee} > m_{\pi^0}$) kinematical cut against $\pi^{\pm} \pi_D^0$ background
- $K_{\pi\mu\mu}$: signals in MUV counters for positive muon identification
- $\pi^{\pm}l^{+}l^{-}$ invariant mass cut (Kaon mass peak)

Efficiencies and background measured from data.

Normalization channels $(\pi^{\pm}\pi^{0}_{\text{Dalitz}}; \pi^{\pm}\pi^{+}\pi^{-})$: 3 tracks, similar topology \Rightarrow first-order cancellation of most systematics

Observation of both K^+ and K^- decays \Rightarrow first measurement of CP-violating charge asymmetry $A_{CP} \equiv \frac{BR^+ - BR^-}{BR^+ + BR^-}$

$$K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-} : \text{ NA48/2 results } \text{ on } K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}$$

$$K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-} : \text{ NA48/2 results } [\text{PLB 697, 107 (2011)}]$$

$$BR(K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = (9.62 \pm 0.21_{\text{stat}} \pm 0.11_{\text{syst}} \pm 0.07_{\text{ext}}) \cdot 10^{-8}$$

$$BR(K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = (9.62 \pm 0.25) \cdot 10^{-8}$$

$$BR(K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = (9.62 \pm 0.25) \cdot 10^{-8}$$

$$BNL E865 [\text{PRL84,2580(2000)}]$$

$$CPV \text{ asymmetry: } BR^{+} = (9.70 \pm 0.26) \cdot 10^{-8} ; BR^{-} = (9.49 \pm 0.35) \cdot 10^{-8}$$

$$A_{\text{CP}}(K^{\pm}_{\pi\mu\mu}) \equiv \frac{BR^{+} - BR^{-}}{BR^{+} + BR^{-}} = (1.1 \pm 2.3) 10^{-2} \Rightarrow |A_{\text{CP}}| < 2.9 \cdot 10^{-2} (90\% \text{ CL})$$

Factor 4 improvement w.r.t. HyperCP [PRL 88, 111801 (2002)] Theoretical predictions: $A_{CP}^{SM} \sim 10^{-4}$ [JHEP 9808, 4 (1998)] $A_{CP}^{SUSY} \sim 10^{-3}$ [PLB 538, 130 (2002); JHEP 0207, 068 (2002)]

► Forward-backward asymmetry in $\theta_{K\mu}$: $(\theta_{K\mu} = \text{angle between the kaon and the opposite-sign lepton in the dilepton rest frame)}$ $A_{FB} = (-2.4 \pm 1.8) \cdot 10^{-2} \implies |A_{FB}| < 2.3 \cdot 10^{-2} \text{ (90\% CL)}$ Theoretical predictions: $A_{FB} \sim 10^{-3}$ [PRD **69**, 094030 (2004); PRD **67**, 074029 (2003)]

- Measured W(z) agrees with theoretical models and is consistent with $K_{\pi ee}$
- ► Search for Lepton Number Violating decays $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$

$$K^{\pm} \rightarrow \pi^{\pm} l^{+} l^{-}$$
: recent results on $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

[hep-ph/0611175]

$K^{\pm} \rightarrow \pi^{\pm} l^+ l^-$ form factors

<u>Models</u> tested for W(z) $\frac{d\Gamma}{dz} = P(z) \cdot |W(z)|^2$; $z = \left(\frac{m_{ll}}{m_K}\right)^2$ Linear: $W(z) = G_F m_K^2 f_0 (1 + \delta \cdot z)$ ChPT $\mathcal{O}(p^6)$: $W(z) = G_F m_K^2 (a_+ + b_+ z) + W^{\pi\pi}(z)$ [JHEP 8, 4 (1998)]

- ChPT + large- N_C QCD: $W(z) = W(\tilde{w}, \beta, z)$ [PLB 595, 301 (2004)]
- "Dubna" ChPT: $W(z) = W(M_a, M_\rho, z)$

Measurements of **BR** and form factor parameters

Decay	$K_{\pi ee}^+$	$K_{\pi ee}^+$	$K_{\pi ee}^{\pm}$	$K^+_{\pi\mu\mu}$	$K_{\pi\mu\mu}^{\pm}$
Experiment	BNL E777	BNL E865	CERN NA48/2	BNL E865	CERN NA48/2
Reference	PRL68,278	PRL 83 ,4482	PLB677,246	PRL84,2580	PLB697,107
Year	(1992)	(1999)	(2009)	(2000)	(2011)
Nr. of events	~ 500	10 300	7 253	430	3 1 2 0
$BR \cdot 10^8$	27.5 ± 2.6	29.4 ± 1.5	31.1 ± 1.2	9.22 ± 0.77	9.62 ± 0.25
f_0		0.533 ± 0.012	0.531 ± 0.016		0.470 ± 0.040
δ	1.31 ± 0.48	2.14 ± 0.20	2.32 ± 0.18	$2.45^{+1.30}_{-0.95}$	3.11 ± 0.57
<i>a</i> +		-0.587 ± 0.010	-0.578 ± 0.016		-0.575 ± 0.039
b_+		-0.655 ± 0.044	-0.779 ± 0.066		-0.813 ± 0.145
ŵ		0.045 ± 0.003	0.057 ± 0.007		0.064 ± 0.014
β		2.8 ± 0.1	3.45 ± 0.30		3.77 ± 0.62
M_a [GeV/c ²]			0.974 ± 0.035		0.993 ± 0.085
M_{ρ} [GeV/c ²]			0.716 ± 0.014		0.721 ± 0.028

A. Bizzeti

Recent results from NA48

Newport News, 06-08-2012

52/54

 $K^{\pm} \rightarrow \pi^{\pm} l^{+} l^{-}$: recent results on $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

Search for $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ decays

- Lepton Number Violating ($|\Delta L| = 2$) decays
- Look for "wrong-sign" events in $\pi\mu\mu$ data

The NA48 experiment at CERN SPS

 $K^{\pm} \rightarrow \pi \pi e^{\pm} \nu (K_{e4}), \pi \pi$ scattering lengths, $K_{\mu 4}$

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: new result (NA48/2 +NA62)

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma^{(*)}$: first observation of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$

 $K^{\pm} \rightarrow \pi^{\pm} l^+ l^-$: recent results on $K^{\pm} \rightarrow \pi^{\pm} \mu^+ \mu^-$

Conclusions

Summary

$\blacktriangleright \ K^{\pm} \to \pi \pi e^{\pm} \nu$

- [PLB, in the press (2012)]
- ▶ 1.1M $K_{e4}(+-)$ and 45 000 $K_{e4}(00)$ events analized
- Precise determination of $\pi\pi$ scattering lengths from K_{e4} and $K_{3\pi}$, in excellent agreement with ChPT prediction
- New improved measurements of K_{e4} BR and form factors
- Future studies on $K_{\mu4}$ decays, very little known

$\blacktriangleright \ K^{\pm} \to \pi^{\pm} \gamma \gamma$ [preliminary]

- $\triangleright \sim 300$ events from NA48/2 + NA62
- Preliminary results on $M_{\gamma\gamma}$ spectrum, BR and ChPT parameter \hat{c}

► $K^{\pm} \to \pi^{\pm} \pi^{0} \gamma^{(*)}$ [preliminary]

• First observation of $K^{\pm} \rightarrow \pi^{\pm} \pi^0 e^+ e^-$

$\blacktriangleright \ K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}$

[PLB 697, 107 (2011)]

- Four times larger sample than existing world statistics
- Unprecedented precision achieved on BR and form factor
- ► Improved limits on: CPV and FB asymmetries, LNV decay