Outlook

Pions: Experimental Tests of Chiral Symmetry Breaking A.M. Bernstein Chiral Dynamics : 2012

- Spontaneous Chiral symmetry hiding
 ⇒Nambu-Goldstone Bosons π, η, Κ
 ⇒ ChPT ⇒ Low energy theorems
- compare $\pi \pi$ and πN scattering $a(\pi \pi)$, $a(\pi N)$
- testing ChPT in photo pion production
- quark mass effects- Isospin breaking
- Open problems

Spontaneous Chiral Symmetry Hiding in QCD

- 1. mass gap below chiral symmetry breaking scale $\Lambda_x \simeq 1~{
 m GeV}$
- 2. three families of Nambu-Goldstone Bosons π, η K are in the gap
- 3. $m_{\pi}^2, m_{\eta}^2, m_K^2 \propto m_u, m_d, m_s$ explicit chiral symmetry breaking
- 4. $m_\pi \simeq$ 140 MeV, the lightest hadrons
- 5. pion properties, interactions the most accurately calculated in ChPT and lattice the best tests of confinement scale QCD

$\tau(\pi^0)$ and QCD

Axial Anomaly Bell and Jackiw, Adler 1969 Chiral Symmetry exact in Lagrangian massless up, down quarks lost in quantization

- $\Gamma(\pi^0 \rightarrow \gamma \gamma) = (m_{\pi}/4\pi)^3 (\alpha / F_{\pi})^2 = 7.76 \text{ eV}$ •exact in the chiral limit m_u , m_d , $m_{\pi} \rightarrow 0$
- no adjustable constants
- chiral corrections ~ (m_ $_{\pi}$ / 4 π F $_{\pi}$)² ~ 2 %

Chiral calculations $\Gamma(\pi^{0} \rightarrow \gamma \gamma)$: π, η, η'

π^0 lifetime

•dominated by axial anomaly

 chiral corrections 4.5%, isospin breaking ~ m_d-m_u accurate to 1%
 commissioned article for the Reviews of Modern Physics with B. Holstein completed

• R.Miskimen Annual Reviews

π polarizability predicted; experiments needed Compass Jlab LOI: Miskimen, Lawrence

$\pi\textsc{-Hadron Scattering Lengths}$

Weinberg PCAC Calculation (1966) $a_{\pi-h}^I = -\vec{I_{\pi}} \cdot \vec{I_h} \ L$ $\vec{I} = \vec{I_{\pi}} + \vec{I_{h}}$ isospin $L = m_{\pi}/(8\pi F_{\pi}^2) \simeq 0.1 \text{ fm}$ $F_{\pi} \simeq$ 92 MeV pion decay constant $a_{\pi=\pi}^{I=0} = (7/4)L$ $a_{\pi-h}^{I} \rightarrow \mathbf{0}$ in chiral limit $m_{\pi} \rightarrow \mathbf{0}$ measures chiral symmetry breaking

this is the first term in the chiral series

Experimental Challenge: $a_{\pi\pi}, a_{\pi N}$

- 1. final state interaction in $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$
- 2. unitary cusp in $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \pi^0$
- 3. pionic H and D: 1s state energy, decay width
- 4. unitary cusp in $\gamma p \rightarrow \pi^0 p$

unitary cusps can appear when a new threshold opens up and flux is either diverted or added

FIG. 1. The $\pi\pi$ rescattering diagram.

$\pi\pi$ scattering lengths

a0

ChPT Low Energy Constants

- 1. chiral symmetry
 - $\Rightarrow L_{eff}$ structure
- 2. magnitudes(LEC)
 - \Rightarrow fitting data
- 3. limits predictive power
- 4. mask higher order contributions?
- 5. $a_{\pi\pi}(\bar{l_3}, \bar{l_4})$

6.
$$m_{\pi} \Rightarrow \bar{l_3}$$

 $F_{\pi}, < r_{S,\pi}^2 > \Rightarrow \bar{l_4}$

ChPT Low Energy Constants

- 1. chiral symmetry $\Rightarrow L_{eff}$ structure
- 2. magnitudes(LEC) \Rightarrow fitting data
- 3. limits predictive power
- 4. mask higher order contributions?
- 5. $a_{\pi\pi}(\bar{l_3}, \bar{l_4})$
- 6. $m_{\pi} \Rightarrow \bar{l_3}$ $F_{\pi}, < r_{S,\pi}^2 > \Rightarrow \bar{l_4}$

ChPT Low Energy Constants

- 1. chiral symmetry $\Rightarrow L_{eff}$ structure
- 2. magnitudes(LEC) \Rightarrow fitting data
- 3. limits predictive power
- 4. mask higher order contributions?
- 5. $a_{\pi\pi}(\bar{l_3}, \bar{l_4})$
- 6. $m_{\pi} \Rightarrow \bar{l_3}$ $F_{\pi}, < r_{S,\pi}^2 > \Rightarrow \bar{l_4}$

PIONIC HYDROGEN – PSI D. Gotta, Jülich

measurements $\pi H(n=2,3,4-1), \pi D(3-1), \mu H(3-1)$

BRAGG CRYSTAL

FOCAL PLANE CCD DETECTOR

PIONIC HYDROGEN 3p-1s transition D. Gotta, Jülich

πN scattering lengths

$\pi N \sigma$ term: u,d,s quarks mass contributions

lattice calc: S. Durr PRD85 (2012) careful error estimates 3 lattice spacings $m_{\pi} > 190 \text{ MeV}$ ChPT fits to N, Λ , Σ , Ξ mass

f_ud = u,d fraction of N mass = 0.042(5) (+21, -4)

$\pi - \pi, \pi - N$ scattering

- 1. chiral symmetry requires weak threshold s wave measures explicit chiral symmetry breaking
- 2. strong p wave

 $\gamma p \rightarrow \pi^0 p$: s wave weak even close to threshold

$\pi \pi$ scattering phase shifts

$\pi \pi$ scattering phase shifts

$\pi - \pi, \pi - N$ scattering

- 1. chiral symmetry requires weak threshold s wave measures explicit chiral symmetry breaking
- 2. strong p wave
- 3. resonances create differences

$\pi\pi \pi N$ **p wave phases versus q²** absolute q values

$\pi\pi$ π **N** p wave phases versus q²

absolute q values

relative to resonance q values

πN scattering: chiral dynamics \rightarrow resonance shape

$\vec{\gamma}\vec{p} \rightarrow \pi N$: A New Era

- 1. Mainz: $\simeq 4\pi$ detector polarized beams and targets continuous energy coverage
- 2. new, stringent tests of ChPT sensitive polarization observables
- 3. first determination of accurate energy range
- 4. transverse polarized target \rightarrow sensitive to final $\pi^0 p, \pi^+ n$ state \rightarrow previous $\pi^{\pm} p$ experiments: isospin tests(?)
- 5. experimental challenge small cross sections; accurate data new techniques(?):HIγS,virtual photon tagging
- 6. theoretical challenge ChPT(heavy Baryon, relativistic, Δ) subtracted dispersion relations. lattice

crystal ball at Mainz

ChPT works to ≤ 170 MeV

Unitary Cusp $\gamma p \rightarrow \pi^0 p$

 $\beta = \mathsf{E}_{0+}(\gamma p \rightarrow \pi^+ n) \mathsf{a}_{cex}(\pi^0 p \leftrightarrow \pi^+ n)$

cusp sign and magnitude

testing isospin symmetry

 $L_{QCD} = L_0 (m_q \rightarrow 0) + L_m (quark mass term)$

L₀ has chiral symmetry; spontaneously broken ⇒ Nambu-Goldstone Bosons (π , η , K) ⇒ ChPT: effective theory of QCD

 $L_m = A(m_u + m_d) + B(m_u - m_d)$ explicitly breaks chiral symmetry

isospin symmetry broken: EM interaction $(m_d-m_u)/\Lambda_{QCD} \approx 2\%$ **exp. tests needed**

$\gamma \mathbf{p} \rightarrow \pi^+ \mathbf{n}, \pi^0 \mathbf{p}$ transverse polarized target • $\Rightarrow \pi N$ interaction neutral charge states. •predicted sign change for π^0, π^+ production

need improved techniques for threshold energies

we want the second seco

ep \rightarrow e'p π^0 Q2 dependence new Mainz , Jlab data HBChPT, relativistic ChPT

Outlook

- We have seen substantial progress
- It has been a stimulating week
- Let's look forward to the CD2015 conference
- let's thanks Jefferson Lab the participants the working group organizers

Outlook

- We have seen substantial progress
- It has been a stimulating week
- Let's look forward to the CD2015 conference
- let's thanks Jefferson Lab the participants the working group organizers
- last but not least let's thank the organizers