Recent results in chiral EFT for the two-nucleon system

Dear reader,

These are the slides from my presentation. They do not represent the entire content of the talk. What was actually said is quite important.

Daniel Phillips

Daniel Phillips Ohio University

RESEARCH SUPPORTED BY THE US DEPARTMENT OF ENERGY

Consequences of QCD's spontaneously and explicitly broken chiral symmetry for A ≥ 2

Expansion in M_{Io}/M_{hi}

Renormalizable order-by-order in this expansion parameter

Consequences of QCD's spontaneously and explicitly broken chiral symmetry for A ≥ 2

Expansion in M_{Io}/M_{hi}

Renormalizable order-by-order in this expansion parameter

■ Clean living→error estimates, model-independent results

Consequences of QCD's spontaneously and explicitly broken chiral symmetry for A ≥ 2

Expansion in M_{Io}/M_{hi}

Renormalizable order-by-order in this expansion parameter

■ Clean living→error estimates, model-independent results

■ χ PT: low scales: m_π, p; high scales: m_ρ, M_N, M_Δ-M_N=Λ_{χ SB}

Outline

- The proposal: Weinberg's counting for the NN potential, aka naive dimensional analysis for V
- One-pion exchange and renormalization: how strong interactions taught us to be not-quite-as-naïve
- A "new leading order" and its discontents
- Higher orders in χEFT: what comes where?
- Selected applications to EM reactions
- Conclusion

χPT for nuclear forces

χPT for nuclear forces

 $\chi PT \Rightarrow$ pion interactions are weak at low energy.
Weinberg (1990), apply χPT to V, i.e. expand it in $P=(p/\Lambda_{\chi SB}, m_{\pi}/\Lambda_{\chi SB})$

 $(E - H_0)|\psi\rangle = V|\psi\rangle$

 $V = V^{(0)} + V^{(2)} + V^{(3)} + \dots$

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)

χPT for nuclear forces

 $\chi PT \Rightarrow$ pion interactions are weak at low energy.
Weinberg (1990), apply χPT to V, i.e. expand it in $P=(p/\Lambda_{\chi SB}, m_{\pi}/\Lambda_{\chi SB})$

 $(E - H_0)|\psi\rangle = V|\psi\rangle$

$$V = V^{(0)} + V^{(2)} + V^{(3)} + \dots$$

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001) Leading-order V:

2 nucleon force \gg 3 nucleon force \gg 4 nucleon force ...

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)

2 nucleon force \gg 3 nucleon force \gg 4 nucleon force ...

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)

No difficulties with counting for long-distance pieces

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)

No difficulties with counting for long-distance pieces

Here I present discussion of "Delta-less" potential

Epelbaum, Meissner, Gloeckle (2005)

Epelbaum, Meissner, Gloeckle (2005)

Epelbaum, Meissner, Gloeckle (2005)

Epelbaum, Meissner, Gloeckle (2005)

N³LO potential, χ^2 /dof comparable to AV18.

Entem, Machleidt (2003)

T_{lab}=50 MeV

N³LO potential, χ²/dof comparable to AV18.

Entem, Machleidt (2003)

Reproduce A=3 and 4 observables

Epelbaum, Nogga, et al.(2002)

	NLO	NNLO	"Exp."
³ H	-7.538.54	-8.68	-8.68
⁴ He	-23.8729.57	-29.5129.98	-29.6

N³LO potential, χ²/dof comparable to AV18. Entem, Machleidt (2003)

Reproduce A=3 and 4 observables

Epelbaum, Nogga, et al.(2002)

- N³LO potential, χ²/dof comparable to AV18. Entem, Machleidt (2003)
- Reproduce A=3 and 4 observables Epelbaum, Nogga, et al.(2002)
- Applications to many-body systems: see talk of R. Roth

- Existence of perturbative expansion?
- Renormalized?
- a priori error estimates?

Existence of perturbative expansion?

Renormalized?

a priori error estimates?

Need to go back and re-examine why we iterate one-pion exchange, in order to obtain a welldefined, renormalized (i.e. cutoff-independent) leading order around which we can perturb

Existence of perturbative expansion?

Renormalized?

a priori error estimates?

Need to go back and re-examine why we iterate one-pion exchange, in order to obtain a welldefined, renormalized (i.e. cutoff-independent) leading order around which we can perturb

Note: don't need $\Lambda \rightarrow \infty$, just Λ varied by a factor~2 around $\Lambda_{\chi SB}$

Existence of perturbative expansion?

Renormalized?

a priori error estimates?

Need to go back and re-examine why we iterate one-pion exchange, in order to obtain a welldefined, renormalized (i.e. cutoff-independent) leading order around which we can perturb

Note: don't need $\Lambda \rightarrow \infty$, just Λ varied by a factor~2 around $\Lambda_{\chi SB}$

Goal: once we understand what terms are present in χ EFT up to some order, we can include them in a potential, and use it with a low cutoff in order to do nuclear physics calculations

Fun facts about one-pion exchange

 $V(\mathbf{r}) = \tau_1^a \tau_2^a \left[\sigma_1 \cdot \sigma_2 Y(r) + S_{12}(\hat{r}) T(r) \right]$ $S_{12}(\hat{r}) = 3(\sigma_1 \cdot \hat{r})(\sigma_2 \cdot \hat{r}) - \sigma_1 \cdot \sigma_2;$ $Y(r) = \frac{g_A^2 m_\pi^2}{48\pi f_\pi^2} \frac{e^{-m_\pi r}}{r};$ $T(r) = \frac{g_A^2}{16\pi f_\pi^2} e^{-m_\pi r} \left[\frac{m_\pi^2}{3r} + \frac{m_\pi}{r^2} + \frac{1}{r^3} \right]$

Fun facts about one-pion exchange

Fun facts about one-pion exchange

$$V(\mathbf{r}) = \tau_1^a \tau_2^a \left[\sigma_1 \cdot \sigma_2 Y(r) + S_{12}(\hat{r}) T(r) \right]$$

$$S_{12}(\hat{r}) = 3(\sigma_1 \cdot \hat{r})(\sigma_2 \cdot \hat{r}) - \sigma_1 \cdot \sigma_2;$$

$$Y(r) = \frac{g_A^2 m_\pi^2}{48\pi f_\pi^2} \frac{e^{-m_\pi r}}{r};$$

$$T(r) = \frac{g_A^2}{16\pi f_\pi^2} e^{-m_\pi r} \left[\frac{m_\pi^2}{3r} + \frac{m_\pi}{r^2} + \frac{1}{r^3}\right]$$

• Momentum scales present: m_{π} and $\Lambda_{NN} = \frac{16\pi f_{\pi}^2}{g_A^2 M} \approx 300 \text{ MeV}$

 χ SB predicts 1/r³ potential that couples waves with ΔL=2

Tensor part of 1π exchange does not appear for S=0

1/r³ part of 1π exchange "screened" by centrifugal barrier for large L

Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN}...in low partial waves

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN}...in low partial waves

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

To describe processes for p~Λ_{NN} need to iterate (tensor part of) one-pion exchange to obtain the LO result

Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN}...in low partial waves

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

- To describe processes for p~Λ_{NN} need to iterate (tensor part of) one-pion exchange to obtain the LO result
- Λ_{NN} is a new low-energy scale, thus this is not χPT . But, higherorder pieces of chiral potential suppressed by $\Lambda_{NN}/\Lambda_{\chi SB}$.

Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN}...in low partial waves

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

- To describe processes for p~Λ_{NN} need to iterate (tensor part of) one-pion exchange to obtain the LO result
- Λ_{NN} is a new low-energy scale, thus this is not χPT . But, higherorder pieces of chiral potential suppressed by $\Lambda_{NN}/\Lambda_{\chi SB}$.
- Perturbation theory should also be OK for: (a) higher partial waves, (b) 1π exchange in singlet waves, (c) p $\ll \Lambda_{NN}$

The quest II: to iterate or not to iterate

The quest II: to iterate or not to iterate

Sum up" VOPE+VOPEG0VOPE +

Do this in ³S₁, ³P₀, ³P₁, ³P₂, and possibly D waves

The quest II: to iterate or not to iterate

"Sum up" VOPE+VOPEG0VOPE +

- Do this in ³S₁, ³P₀, ³P₁, ³P₂, and possibly D waves
- In "high" partial waves, series dominated by first term

The quest II: to iterate or not to iterate

"Sum up" VOPE+VOPEG0VOPE +

Do this in ³S₁, ³P₀, ³P₁, ³P₂, and possibly D waves

In "high" partial waves, series dominated by first term

Kaiser, Brockmann, Weise (1997)

Standard χPT

The quest III: S waves

Beane, Bedaque, Savage, van Kolck (2002); Pavon Valderrama, Ruiz Arriola (2005)

The quest III: S waves

Beane, Bedaque, Savage, van Kolck (2002); Pavon Valderrama, Ruiz Arriola (2005)

Stable for wide range of cutoffs

Subtractive renormalization numerically efficient

Yang, Elster, Phillips (2007)

The quest III: S waves

Beane, Bedaque, Savage, van Kolck (2002); Pavon Valderrama, Ruiz Arriola (2005)

χ EFT deuteron wave functions at leading order

Pavon Valderrama, Nogga, Ruiz Arriola, DP, EPJA 36, 315 (2008)

The quest IV: solving the 1/r³ potential

Case (1950), Sprung et al. (1994), Beane et al. (2001), Pavon Valderrama, Ruiz Arriola (2004-6)

Attractive case, for $r \ll 1/\Lambda_{NN}$

$$u_1(r) = \left(\Lambda_{NN}r\right)^{3/4} \cos\left(4\sqrt{\frac{1}{\Lambda_{NN}r}}\right); u_2(r) = \left(\Lambda_{NN}r\right)^{3/4} \sin\left(4\sqrt{\frac{1}{\Lambda_{NN}r}}\right)$$

Equally regular solutions, need boundary condition to fix phase

- c.f. $j_l(kr)$ and $n_l(kr)$ for plane waves as $r \rightarrow 0$
- **Repulsive**, for $r \ll 1/\Lambda_{NN}$

$$u_1(r) = \left(\Lambda_{NN}r\right)^{3/4} \exp\left(4\sqrt{\frac{1}{\Lambda_{NN}r}}\right); u_2(r) = \left(\Lambda_{NN}r\right)^{3/4} \exp\left(-4\sqrt{\frac{1}{\Lambda_{NN}r}}\right)$$

Still need boundary condition to fix "phase", but results insensitive to choice

Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.

Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.

Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

"New leading order": 1π exchange plus contact interactions, iterated, in 3S1, 3P0 and 3P2

Meanwhile: 1π exchange, iterated, in 3P1; contact interaction, iterated, in 1S0.

Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.

Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

- "New leading order": 1π exchange plus contact interactions, iterated, in 3S1, 3P0 and 3P2
- Meanwhile: 1π exchange, iterated, in 3P1; contact interaction, iterated, in 1S0.

Renormalization-group analysis

Birse

Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.

Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

- "New leading order": 1π exchange plus contact interactions, iterated, in 3S1, 3P0 and 3P2
- Meanwhile: 1π exchange, iterated, in 3P1; contact interaction, iterated, in 1S0.
- Renormalization-group analysis
 Birse

Moral: NDA doesn't predict scaling of short-distance operators needed for renormalization if LO wave functions are not plane waves

Make one-pion exchange softer, by introducing a Pauli-Villars regulator. Keep regulator mass finite

Beane, Vuorinen, Kaplan (2008)

- Can even make it soft enough that it appears perturbative.
- Worked out for ${}^{3}S_{1} {}^{3}D_{1} \varepsilon_{1}$ up to NNLO

Make one-pion exchange softer, by introducing a Pauli-Villars regulator. Keep regulator mass finite

Beane, Vuorinen, Kaplan (2008)

- Can even make it soft enough that it appears perturbative.
- Worked out for ${}^{3}S_{1} {}^{3}D_{1} \varepsilon_{1}$ up to NNLO
- Employ relativistic propagator in NN scattering equation integrals in scattering equation are also softened

Epelbaum, Gegelia (2012)

Make one-pion exchange softer, by introducing a Pauli-Villars regulator. Keep regulator mass finite

Beane, Vuorinen, Kaplan (2008)

- Can even make it soft enough that it appears perturbative.
- Worked out for ${}^{3}S_{1}$ - ${}^{3}D_{1}$ - ϵ_{1} up to NNLO
- Employ relativistic propagator in NN scattering equation integrals in scattering equation are also softened

Epelbaum, Gegelia (2012)

- In UV problem becomes solution of 1/r² potential in 2d
- Still some additional contact terms required, e.g. in ³P₀

Make one-pion exchange softer, by introducing a Pauli-Villars regulator. Keep regulator mass finite

Beane, Vuorinen, Kaplan (2008)

- Can even make it soft enough that it appears perturbative.
- Worked out for ${}^{3}S_{1} {}^{3}D_{1} \varepsilon_{1}$ up to NNLO
- Employ relativistic propagator in NN scattering equation integrals in scattering equation are also softened

Epelbaum, Gegelia (2012)

- In UV problem becomes solution of 1/r² potential in 2d
- Still some additional contact terms required, e.g. in ³P₀
- Argue that cutoff should never get above m_{ρ} Epelbaum, Meissner (2006)

Birse et al. (2006-11), Pavon Valderrama (2009-11), Long & Yang (2011)

No argument about power counting of "long-distance" parts of potential, once particle content of EFT is fixed

Birse et al. (2006-11), Pavon Valderrama (2009-11), Long & Yang (2011)

- No argument about power counting of "long-distance" parts of potential, once particle content of EFT is fixed
- Since they are small (down by at least two orders in the chiral expansion), can compute their matrix elements in perturbation theory, between leading-order wave functions

Birse et al. (2006-11), Pavon Valderrama (2009-11), Long & Yang (2011)

- No argument about power counting of "long-distance" parts of potential, once particle content of EFT is fixed
- Since they are small (down by at least two orders in the chiral expansion), can compute their matrix elements in perturbation theory, between leading-order wave functions
- But, need to ensure these are renormalized, i.e. matrix elements have regulator dependence removed. What NN contact interactions are necessary to do that?

Birse et al. (2006-11), Pavon Valderrama (2009-11), Long & Yang (2011)

- No argument about power counting of "long-distance" parts of potential, once particle content of EFT is fixed
- Since they are small (down by at least two orders in the chiral expansion), can compute their matrix elements in perturbation theory, between leading-order wave functions
- But, need to ensure these are renormalized, i.e. matrix elements have regulator dependence removed. What NN contact interactions are necessary to do that?
- Analysis tool: co-ordinate space matrix elements of V⁽³⁾ (say) between $|\psi^{(0)}\rangle$
- Equivalent momentum-space formulation

As r→0, sub-leading 2π exchange $MV^{(3)}(r) \sim \frac{\Lambda_{NN}}{\Lambda_{\gamma}^4} \frac{1}{r^6}$

As r→0, sub-leading 2π exchange $MV^{(3)}(r) \sim \frac{\Lambda_{NN}}{\Lambda_{\chi}^4} \frac{1}{r^6}$

$$\langle \psi^{(0)} | MV^{(3)} | \psi^{(0)} \rangle \sim \int_{r_c} dr \, (\Lambda_{NN} r)^{3/2} (1 + \alpha_2 k^2 r^2 + \dots) \frac{\Lambda_{NN}}{\Lambda_{\chi}^4} \frac{1}{r^6} \\ \sim \frac{\Lambda_{NN}^{5/2}}{\Lambda_{\chi}^4} \frac{1}{r_c^{7/2}} + \tilde{\alpha}_2 k^2 \frac{\Lambda_{NN}^{5/2}}{\Lambda_{\chi}^4} \frac{1}{r_c^{3/2}} + \text{ finite}$$

As r→0, sub-leading 2π exchange $MV^{(3)}(r) \sim \frac{\Lambda_{NN}}{\Lambda_{\chi}^4} \frac{1}{r^6}$

$$\langle \psi^{(0)} | MV^{(3)} | \psi^{(0)} \rangle \sim \int_{r_c} dr \, (\Lambda_{NN} r)^{3/2} (1 + \alpha_2 k^2 r^2 + \dots) \frac{\Lambda_{NN}}{\Lambda_\chi^4} \frac{1}{r^6} \\ \sim \frac{\Lambda_{NN}^{5/2}}{\Lambda_\chi^4} \frac{1}{r_c^{7/2}} + \tilde{\alpha}_2 k^2 \frac{\Lambda_{NN}^{5/2}}{\Lambda_\chi^4} \frac{1}{r_c^{3/2}} + \text{ finite}$$

Need two counterterms, same as in NDA, although scaling of matrix element with r_c modified

As r→0, sub-leading 2π exchange $MV^{(3)}(r) \sim \frac{\Lambda_{NN}}{\Lambda_{\chi}^4} \frac{1}{r^6}$

$$\langle \psi^{(0)} | MV^{(3)} | \psi^{(0)} \rangle \sim \int_{r_c} dr \left(\Lambda_{NN} r \right)^{3/2} (1 + \alpha_2 k^2 r^2 + \dots) \frac{\Lambda_{NN}}{\Lambda_{\chi}^4} \frac{1}{r^6}$$
$$\sim \frac{\Lambda_{NN}^{5/2}}{\Lambda_{\chi}^4} \frac{1}{r_c^{7/2}} + \tilde{\alpha}_2 k^2 \frac{\Lambda_{NN}^{5/2}}{\Lambda_{\chi}^4} \frac{1}{r_c^{3/2}} + \text{ finite}$$

Need two counterterms, same as in NDA, although scaling of matrix element with r_c modified

Real difference in P waves, where $\sim r^2$ gets replaced by $\sim r^{3/4}$

Birse (2006)

Two NN contact interactions needed to renormalize V⁽³⁾ in attractive triplet P waves

Shallow poles: why the 1So is special

Let's talk about the ¹S₀: almost a bound state, but one-pion exchange is weak (perturbative?) there.

Existence of shallow pole results from tuning of contact interaction to be O(P⁻¹), stronger than indicated by NDA

Let's talk about the ¹S₀: almost a bound state, but one-pion exchange is weak (perturbative?) there.

- interaction to be $O(P^{-1})$, stronger than indicated by NDA
- $|\psi^{(0)}\rangle$ ~1/r at short distances⇒matrix elements very divergent

Birse (2009, 2010), Pavon Valderrama (2010), Long & Yang (2011)

Let's talk about the ¹S₀: almost a bound state, but one-pion exchange is weak (perturbative?) there.

■ $|\psi^{(0)}\rangle$ ~1/r at short distances⇒matrix elements very divergent

Birse (2009, 2010), Pavon Valderrama (2010), Long & Yang (2011)

C₂p², C₄p⁴, etc. enhanced by two orders c.f. NDA

Let's talk about the ¹S₀: almost a bound state, but one-pion exchange is weak (perturbative?) there.

- Existence of shallow pole results from tuning of contact interaction to be O(P⁻¹), stronger than indicated by NDA
- $|\psi^{(0)}\rangle$ ~1/r at short distances⇒matrix elements very divergent

Birse (2009, 2010), Pavon Valderrama (2010), Long & Yang (2011)

- C₂p², C₄p⁴, etc. enhanced by two orders c.f. NDA
- Since deuteron is also fine-tuned there is a similar (but not the same!) enhancement of contact interactions in the 3S1 channel

Birse (2009)

Summary of results I

Birse (2009)

ORDER	INCLUDED
P-1	C ^{1S0} , C ^{3S1} , 1π exchange
P ^{-1/2}	C ^{3P0} , C ^{3P2}
P ⁰	C2 ^{1S0}
P ^{1/2}	C2 ^{3S1}
P ^{3/2}	C ₂ ^{3P0} , C ₂ ^{3P2}
P ²	Renormalized leading 2π exchange, C ^{1P1} , C ^{3P1} ,C ⁴ ^{1S0} , C ^{ε1}
P ^{5/2}	C4 ^{3S1}
P ³	Renormalized sub-leading 2π exchange

Summary of results III

Pavon Valderrama (2011-12)

Summary of results III

Pavon Valderrama (2011-12)

r_c dependence in "Weinberg" approach not under control in, e.g., ³P₀

Summary of results IV: ¹S₀ phases

Pavon Valderrama (2011)

Summary of results IV: ¹S₀ phases

- Disagreement about counting for waves where one-pion exchange is repulsive (e.g. ³P₁); number of counterterms needed to stabilize ³P₂-³F₂
- How much does fine-tuning in ³S₁ affect scaling of contact operators?
- What to do with D waves
- What is leading order? O(P⁻¹), O(P^{-1/2}), O(P⁰)?

- Disagreement about counting for waves where one-pion exchange is repulsive (e.g. ³P₁); number of counterterms needed to stabilize ³P₂-³F₂
- How much does fine-tuning in ³S₁ affect scaling of contact operators?
- What to do with D waves
- What is leading order? O(P⁻¹), O(P^{-1/2}), O(P⁰)?
- Other proposals: Albaladejo & Oller: N/D method; Szpigel & Timoteo: modified ¹S₀ power counting in subtractive method

- Disagreement about counting for waves where one-pion exchange is repulsive (e.g. ³P₁); number of counterterms needed to stabilize ³P₂-³F₂
- How much does fine-tuning in ³S₁ affect scaling of contact operators?
- What to do with D waves
- What is leading order? O(P⁻¹), O(P^{-1/2}), O(P⁰)?
- Other proposals: Albaladejo & Oller: N/D method; Szpigel & Timoteo: modified ¹S₀ power counting in subtractive method

Breakdown of expansion for long-distance V: r≈0.9 fm

Baru, Epelbaum, Hanhart, Hoferichter, Kudratsyev, DP (2012)

χEFT expansion for probes

 $J_{\mu} = J_{\mu}^{(0)} + J_{\mu}^{(1)} + J_{\mu}^{(2)} + \dots \quad |\psi\rangle = |\psi\rangle^{(0)} + |\psi\rangle^{(2)} + \dots$

 $J_{\mu} = J_{\mu}^{(0)} + J_{\mu}^{(1)} + J_{\mu}^{(2)} + \dots \quad |\psi\rangle = |\psi\rangle^{(0)} + |\psi\rangle^{(2)} + \dots$

Need to Compute Both J_{μ} and $|\psi\rangle$ to order n to get \mathcal{M}_{μ} to order n

$\chi EFT for J_0^{(s)}$

O(e): one-body (impulse) current

O(eP³): 2B mechanism enters, but no free parameters SUPPRESSED BY 1/M_N Phillips (2003)

$\chi EFT for J_0^{(s)}$

O(e): one-body (impulse) current

- O(eP³): 2B mechanism enters, but no free parameters
 SUPPRESSED BY 1/M_N Phillips (2003)
- O(eP⁴): Two-pion exchange pieces of J₀^(s). VANISH!

Koelling et al. (2009)

$\chi EFT for J_0^{(s)}$

O(e): one-body (impulse) current

O(eP³): 2B mechanism enters, but no free parameters

SUPPRESSED BY 1/MNPhillips (2003)

O(eP⁴): Two-pion exchange pieces of J₀^(s). VANISH!

Koelling et al. (2009)

O(eP⁵): Short-distance parts of operators IN NDA COUNTING FOR SHORT-DISTANCE OPERATORS

Renormalizing G_C/G_Q

Phillips (2007)

 Adjust O(eP⁵) contact term to reproduce Q_d

Renormalizing G_C/G_Q

Phillips (2007)

Adjust O(eP⁵)
 contact term to
 reproduce Q_d

- Ratio is largely independent of model for q<600 MeV
- G_C/G_Q to 3% at
 Q= 0.39 GeV

Confronting experiment

Confronting experiment

Prediction for $G_C \leftrightarrow A$ at low Q²: Hall A experiment

Yang, Kaiser, Park, Phillips (in preparation)

Application to f_L in (e,e'p)

G_M to same order

G_M to same order

Koelling, Epelbaum, Phillips (in preparation)

- χEFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama

- χEFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama
- **nd** scattering including isospin violation $\rightarrow a^+$, g_C

Baru, Hanhart, Hoferichter, Kubis, Nogga, Phillips (2011-12)

- χEFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama
- **a** d scattering including isospin violation $\rightarrow a^+$, g_C Baru, Hanhart, Hoferichter, Kubis, Nogga, Phillips (2011-12)
- Threshold M1 capture; talk of L. Girlanda

- χEFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama
- **nd** scattering including isospin violation $\rightarrow a^+$, g_C

Baru, Hanhart, Hoferichter, Kubis, Nogga, Phillips (2011-12)

- Threshold M1 capture; talk of L. Girlanda
- Weak capture on deuterium: Γ_D=399(3) s⁻¹ in a χEFT calculation up to O(P³); talk of P. Kammel

Marcucci et al., Phys. Rev. Lett. (2012)

- χEFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama
- **a** π d scattering including isospin violation \rightarrow a⁺, g_C Baru, Hanhart, Hoferichter, Kubis, Nogga, Phillips (2011-12)
- Threshold M1 capture; talk of L. Girlanda
- Weak capture on deuterium: Γ_D=399(3) s⁻¹ in a χEFT calculation up to O(P³); talk of P. Kammel

Marcucci et al., Phys. Rev. Lett. (2012)

Application of electroweak operators in A=3,... ongoing

- χEFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama
- **a** π d scattering including isospin violation \rightarrow a⁺, g_C Baru, Hanhart, Hoferichter, Kubis, Nogga, Phillips (2011-12)
- Threshold M1 capture; talk of L. Girlanda
- Weak capture on deuterium: Γ_D=399(3) s⁻¹ in a χEFT calculation up to O(P³); talk of P. Kammel

Marcucci et al., Phys. Rev. Lett. (2012)

- Application of electroweak operators in A=3,... ongoing
- Role of Δ(1232) in long-range part of V, electroweak operators

Building a better chiral V_{NN}

Building a better chiral V_{NN}

- Three-pion exchange less important than several shortdistance operators
- For V_{NN} accurate to P⁴ relative to leading include everything in "chiral potential" at NNLO plus second contact operators in ³P₀ and ³P₂, third in ³S₁ and ¹S₀, and (?) 2 in ³D₂
- Most of these additional pieces are in N³LO potential
- C.f. Nijmegen phase-shift analysis: chiral two-pion exchange plus similar number of short-distance operators
- Real problems with counting may come in 3NF: more shortdistance operators enter if this counting is correct

BACKUP SLIDES

D Waves

Supplementary phase-shift plots

Supplementary phase-shift plots

χEFT for G_C up to O(eP⁴)

Good J₀ convergence

- G_C dominated by r~1/m_π physics in this q range
 - But we need to constrain interplay of short-distance pieces of charge operator and pionrange physics

DP, J. Phys. G 34, 365 (2007)
Static properties and renormalization

Static properties and renormalization

	Expt.	NNLO	N ³ LO	Nijm93
$< r_d^2 >_{pt} (fm)$	1.9753(10)	1.974- 1.976	1.979- 1.989	1.970
Q_d (fm ²)	0.2859(3)	0.279- 0.282	0.264- 0.268	0.276

Static properties and renormalization

	Expt.	NNLO	N ³ LO	Nijm93
$< r_d^2 >_{pt} (fm)$	1.9753(10)	1.974- 1.976	1.979- 1.989	1.970
Q_d (fm ²)	0.2859(3)	0.279- 0.282	0.264- 0.268	0.276

Two-body ${}^{3}S_{1} \rightarrow {}^{3}S_{1}$ operator:

Chen, Rupak, and Savage (1999); DP (2007)

	Expt.	NLO	NNLO	Nijm93
$\mu_d(\mu_N)$	0.857406(1)	0.856- 0.862	0.853- 0.860	0.848

	Expt.	NLO	NNLO	Nijm93
μ _d (μ _N)	0.857406(1)	0.856- 0.862	0.853- 0.860	0.848

1% variation consistent with O(eP⁴) corrections to IA?

	Expt.	NLO	NNLO	Nijm93
μ _d (μ _N)	0.857406(1)	0.856- 0.862	0.853- 0.860	0.848

- 1% variation consistent with O(eP⁴) corrections to IA?
- At O(eP⁴) there are two contributions: a pion-range current and a magnetic-moment counterterm

$$\mathcal{L}_{M1} = -eL_2(N^{\dagger}\sigma_i\epsilon^{ijk}F_{jk}N)(N^{\dagger}N)$$

$$\mathbf{J}_{d_9}^{(s)} = -2e\frac{g_A i}{f_\pi^2} d_9 \tau_1^a \tau_2^a \frac{\sigma_2 \cdot \mathbf{q}_2}{\mathbf{q}_2^2 + m_\pi^2} (\mathbf{q}_2 \times \mathbf{q}) + (1 \leftrightarrow 2)$$

	Expt.	NLO	NNLO	Nijm93
μ _d (μ _N)	0.857406(1)	0.856- 0.862	0.853- 0.860	0.848

- 1% variation consistent with O(eP⁴) corrections to IA?
- At O(eP⁴) there are two contributions: a pion-range current and a magnetic-moment counterterm

$$\mathcal{L}_{M1} = -eL_2(N^{\dagger}\sigma_i\epsilon^{ijk}F_{jk}N)(N^{\dagger}N)$$

$$\mathbf{J}_{d_9}^{(s)} = -2e\frac{g_A i}{f_\pi^2} d_9 \tau_1^a \tau_2^a \frac{\sigma_2 \cdot \mathbf{q}_2}{\mathbf{q}_2^2 + m_\pi^2} (\mathbf{q}_2 \times \mathbf{q}) + (1 \leftrightarrow 2)$$

d₉ poorly constrained from single-nucleon sector