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Dear reader,

These are the slides from my presentation. 
They do not represent the entire content of 
the talk. What was actually said is quite 
important.
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Chiral EFT for nuclear physics: 
desirable features

Consequences of QCD’s spontaneously and explicitly broken 
chiral symmetry for A ≥ 2

Expansion in Mlo/Mhi

Renormalizable order-by-order in this expansion parameter

Clean living→error estimates, model-independent results

χPT: low scales: mπ, p; high scales: mρ, MN, MΔ-MN≡ΛχSB



Outline
The proposal: Weinberg’s counting for the NN potential, 
aka naive dimensional analysis for V

One-pion exchange and renormalization: how strong 
interactions taught us to be not-quite-as-naïve

A “new leading order” and its discontents

Higher orders in χEFT: what comes where?

Selected applications to EM reactions

Conclusion
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χPT⇒pion interactions are weak at low energy. 
Weinberg (1990), apply χPT to V, i.e. expand it in 
P=(p/ΛχSB,mπ/ΛχSB)

Leading-order V:

χPT for nuclear forces

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)

V (0) = + ;

(E − H0)|ψ〉 = V |ψ〉

V = V
(0)

+ V
(2)

+ V
(3)

+ . . .

hp0|V |pi = C3S1P3S1 + C1S0P1S0 + V1⇡(p0 � p)
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Higher orders in V

No difficulties with counting for long-distance pieces

Here I present discussion of “Delta-less” potential

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)

Courtesy
E. Epelbaum

Consistent 3nfs, 4nfs, 
see talk of H. Krebs
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“Weinberg” counting to O(P4) [N3LO]

But Limited Range of Cutoffs: 
Λ=0.5-0.7 GeV

Epelbaum, Meissner, Gloeckle (2005)



Successes in A=2-4



Successes in A=2-4

N3LO potential, 
χ2/dof comparable 
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Tlab=50 MeV

Epelbaum, Meissner, Gloeckle (2005)
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N3LO potential, 
χ2/dof comparable 
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Reproduce A=3 
and 4 observables

Entem, Machleidt (2003)

Epelbaum, Nogga, et al.(2002)

NLO NNLO “Exp.”
3H -7.53..-8.54 -8.68 -8.68

4He -23.87..-29.57 -29.51..-29.98 -29.6
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Successes in A=2-4

N3LO potential, 
χ2/dof comparable 
to AV18.

Reproduce A=3 
and 4 observables

Applications to 
many-body 
systems: see talk 
of R. Roth

Entem, Machleidt (2003)

Epelbaum, Nogga, et al.(2002)

E=3 MeV

E=10 MeV

E=65 MeV

Courtesy E. Epelbaum
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But is it a (chiral) EFT?
Existence of perturbative expansion?

Renormalized?

a priori error estimates?

Need to go back and re-examine why we iterate 
one-pion exchange, in order to obtain a well-

defined, renormalized (i.e. cutoff-independent) 
leading order around which we can perturb

Goal: once we understand what terms are present in χEFT up to 
some order, we can include them in a potential, and use it with a 

low cutoff in order to do nuclear physics calculations

Note: don’t need Λ→∞, just Λ varied by a factor∼2 around ΛχSB
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Fun facts about one-pion exchange

Momentum scales present: 

χSB predicts 1/r3 potential that couples waves with ΔL=2

Tensor part of 1π exchange does not appear for S=0

1/r3 part of 1π exchange “screened” by centrifugal barrier for 
large L 

m⇡ and ⇤NN =
16⇡f2

⇡

g2
AM

⇡ 300 MeV

V (r) = ⌧a
1 ⌧a

2 [�1 · �2Y (r) + S12(r̂)T (r)]
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The quest for leading order I

Iterates of one-pion exchange become comparable with tree-
level for momenta of order ΛNN...in low partial waves

To describe processes for p∼ΛNN need to iterate (tensor part of) 
one-pion exchange to obtain the LO result

ΛNN is a new low-energy scale, thus this is not χPT. But, higher-
order pieces of chiral potential suppressed by ΛNN/ΛχSB.

Perturbation theory should also be OK for: (a) higher partial 
waves,  (b) 1π exchange in singlet waves, (c) p ≪ ΛNN

Beane et al. (2002); Pavon Valderrama, 
Ruiz Arriola (2003); Birse (2006)

vs

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)
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“Sum up” VOPE+VOPEG0VOPE + ....

Do this in 3S1, 3P0, 3P1, 3P2, and possibly D waves

In “high” partial waves, series dominated by first term

The quest II: to iterate or not to iterate

Kaiser, Brockmann, Weise (1997)

Standard 
χPT
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Stable for wide range 
of cutoffs

Subtractive 
renormalization 
numerically efficient

One-pion exchange 
weak in 1S0 

The quest III: S waves

Yang, Elster, Phillips (2007)
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χEFT deuteron wave functions at leading order

0 1 2 3 4 5
r (fm)

-0.1
0

0.1
0.2
0.3
0.4
0.5

u(
r) 

(fm
-1

/2
)

r-space to r=0
p-space: R=3 fm-1

p-space: R=6 fm-1

p-space: R=12 fm-1

p-space: R=20 fm-1

AV18

Pavon Valderrama, Nogga, Ruiz Arriola,DP, EPJA 36, 315 (2008)



The quest IV: solving the 1/r3 potential

Attractive case, for r≪1/ΛNN

Equally regular solutions, need boundary condition to fix phase

c.f.                               for plane waves as r→0

Repulsive, for r≪1/ΛNN

Still need boundary condition to fix “phase”, but results 
insensitive to choice

u1(r) = (⇤NNr)3/4
cos

✓
4

r
1

⇤NNr

◆
;u2(r) = (⇤NNr)3/4

sin

✓
4

r
1

⇤NNr

◆

u1(r) = (⇤NNr)3/4
exp

✓
4

r
1

⇤NNr

◆
;u2(r) = (⇤NNr)3/4

exp

✓
�4

r
1

⇤NNr

◆

jl(kr) and nl(kr)

Case (1950), Sprung et al. (1994), 
Beane et al. (2001),

Pavon Valderrama, Ruiz Arriola (2004-6)
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The quest V: power counting
Need contact terms in certain P 
waves already at LO, in order to 
specify short-distance b.c.

“New leading order”: 1π exchange 
plus contact interactions, iterated, 
in 3S1, 3P0 and 3P2

Meanwhile: 1π exchange, iterated, 
in 3P1; contact interaction, iterated, 
in 1S0.

Renormalization-group analysis

Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

Moral: NDA doesn’t predict scaling of short-distance operators 
needed for renormalization if LO wave functions are not plane waves

Birse
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Attempts to circumvent
Make one-pion exchange softer, by introducing a Pauli-Villars 
regulator. Keep regulator mass finite

Can even make it soft enough that it appears perturbative.

Worked out for 3S1-3D1-ε1 up to NNLO

Employ relativistic propagator in NN scattering equation 
⇒integrals in scattering equation are also softened

In UV problem becomes solution of 1/r2 potential in 2d

Still some additional contact terms required, e.g. in 3P0

Argue that cutoff should never get above mρ

Beane, Vuorinen, Kaplan (2008)

Epelbaum, Gegelia (2012)

Epelbaum, Meissner (2006)
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Sub-leading orders
No argument about power counting of “long-distance” parts 
of potential, once particle content of EFT is fixed

Since they are small (down by at least two orders in the chiral 
expansion), can compute their matrix elements in perturbation 
theory, between leading-order wave functions

But, need to ensure these are renormalized, i.e. matrix 
elements have regulator dependence removed. What NN 
contact interactions are necessary to do that?

Analysis tool: co-ordinate space matrix elements of V(3) (say) 
between |ψ(0)⟩

Equivalent momentum-space formulation

Birse et al. (2006-11), Pavon Valderrama 
(2009-11), Long & Yang (2011)
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An example: sub-leading TPE in 3S1

As r→0, sub-leading 2π exchange 

Need two counterterms, same as in NDA, although scaling of 
matrix element with rc modified
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An example: sub-leading TPE in 3S1

As r→0, sub-leading 2π exchange 

Need two counterterms, same as in NDA, although scaling of 
matrix element with rc modified

Real difference in P waves, where ∼r2 gets replaced by ∼r3/4

Two NN contact interactions needed to renormalize V(3) in 
attractive triplet P waves

MV (3)(r) ⇠ ⇤NN

⇤4
�

1
r6

h (0)|MV (3)| (0)i ⇠
Z

rc

dr (⇤NNr)3/2(1 + ↵2k
2r2 + . . .)

⇤NN

⇤4
�

1
r6

⇠ ⇤5/2
NN

⇤4
�

1

r7/2
c

+ ↵̃2k
2 ⇤5/2

NN
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�
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r3/2
c

+ finite

= 0d

drc

Birse (2006)
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V (0) = + ;
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Shallow poles: why the 1S0 is special
Let’s talk about the 1S0: almost a bound state, but one-pion 
exchange is weak (perturbative?) there.

Existence of shallow pole results from tuning of contact 
interaction to be O(P-1), stronger than indicated by NDA

|ψ(0)⟩∼1/r at short distances⇒matrix elements very divergent

C2p2, C4p4, etc. enhanced by two orders c.f. NDA

Since deuteron is also fine-tuned there is a similar (but not the 
same!) enhancement of contact interactions in the 3S1 channel

V (0) = + ;

Birse (2009, 2010), Pavon Valderrama (2010), Long & Yang (2011)

Birse (2009)



Summary of results I
order included

P-1 C1S0, C3S1, 1π exchange
P-1/2 C3P0, C3P2

P0 C21S0

P1/2 C23S1

P3/2 C23P0, C23P2

P2 Renormalized leading 2π 
exchange, C1P1, C3P1,C41S0, Cε1

P5/2 C43S1

P3 Renormalized sub-leading 2π 
exchange

Birse (2009)



Summary of results III
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Summary of results III

rc dependence in “Weinberg” approach not under control in, e.g., 3P0

Pavon Valderrama (2011-12)



Summary of results IV: 1S0 phases

Pavon Valderrama (2011)



Summary of results IV: 1S0 phases

Long and Yang (2012)

Pavon Valderrama (2011)
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What I didn’t tell you
Disagreement about counting for waves where one-pion 
exchange is repulsive (e.g. 3P1); number of counterterms 
needed to stabilize 3P2-3F2
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What I didn’t tell you
Disagreement about counting for waves where one-pion 
exchange is repulsive (e.g. 3P1); number of counterterms 
needed to stabilize 3P2-3F2

How much does fine-tuning in 3S1 affect scaling of contact 
operators?

What to do with D waves

What is leading order? O(P-1), O(P-1/2), O(P0)?

Other proposals: Albaladejo & Oller: N/D method; Szpigel & 
Timoteo: modified 1S0 power counting in subtractive method

Breakdown of expansion for long-distance V: r≈0.9 fm  
Baru, Epelbaum, Hanhart, Hoferichter, Kudratsyev, DP (2012)
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χEFT expansion for probes
Mµ = ⇥�|Jµ|�⇤

Jµ = J (0)
µ + J (1)

µ + J (2)
µ + . . .

↓ ↓

|�� = |��(0) + |��(2) + . . .

Need to Compute Both Jµ 

and |ψ> to order n to get 
Mµ to order n
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χEFT for J0(s)

O(e): one-body (impulse) current

O(eP3): 2B mechanism enters, but no free parameters

O(eP4): Two-pion exchange pieces of J0(s). VANISH!

O(eP5): Short-distance parts of operators

O(e) O(eP 3) O(eP 5)

in nda counting for short-distance operators

Koelling et al. (2009)

Suppressed by 1/Mn Phillips (2003)
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Ratio is largely 
independent of 
model for q<600 
MeV

GC/GQ to 3% at 
Q= 0.39 GeV
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Confronting experiment

Prediction for GC ↔A at low Q2: Hall A experiment

Application to fL in (e,e’p)
Yang, Kaiser, Park, Phillips (in preparation)

T̃20R = �3
T̃20p

2Qd|Q|2

Zhang et al., PRL (2011)

$ GC/GQ



GM to same order

d9=-0.002-0.001 GeV-2;
L2=0.089-0.731 GeV4

PRELIMINARY



GM to same order

d9=-0.002-0.001 GeV-2;
L2=0.089-0.731 GeV4

Koelling, Epelbaum, Phillips (in preparation)

PRELIMINARY
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Summary and omissions
 χEFT demonstrably renormalized for wide range of regulator 
parameters (finally!)

Details: WG talks of B. Long, M. Pavon Valderrama

πd scattering including isospin violation→a+, gC

Threshold M1 capture; talk of L. Girlanda

Weak capture on deuterium: ΓD=399(3) s-1 in a χEFT 
calculation up to O(P3); talk of P. Kammel

Application of electroweak operators in A=3,... ongoing

Role of Δ(1232) in long-range part of V, electroweak operators

Marcucci et al., Phys. Rev. Lett. (2012)

Baru, Hanhart, Hoferichter, Kubis, Nogga, Phillips (2011-12) 
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Building a better chiral VNN
Three-pion exchange less important than several short-
distance operators

For VNN accurate to P4 relative to leading include everything 
in “chiral potential” at NNLO plus second contact operators 
in 3P0 and 3P2, third in 3S1 and 1S0, and (?) 2 in 3D2

Most of these additional pieces are in N3LO potential

C.f. Nijmegen phase-shift analysis: chiral two-pion 
exchange plus similar number of short-distance operators

Real problems with counting may come in 3NF: more short-
distance operators enter if this counting is correct
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χEFT for GC up to O(eP4)

DP, J. Phys. G 34, 365 (2007)

Good J0  
convergence

GC dominated by 
r∼1/mπ physics in 
this q range

But we need to 
constrain interplay 
of short-distance 
pieces of charge 
operator and pion-
range physics
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Static properties and renormalization
Expt. NNLO N3LO Nijm93

<rd2>pt (fm)

Qd (fm2)

1.9753(10) 1.974-
1.976

1.979-
1.989 1.970

0.2859(3) 0.279-
0.282

0.264-
0.268 0.276

O(eP 5) :
Two-body 3S1→ 3S1 operator:

Chen, Rupak, and Savage (1999); DP (2007)
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At O(eP4) there are two contributions: a pion-range current and a 
magnetic-moment counterterm
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1% variation consistent with O(eP4) corrections to IA?

At O(eP4) there are two contributions: a pion-range current and a 
magnetic-moment counterterm

d9 poorly constrained from single-nucleon sector

GM beyond impulse approximation
Expt. NLO NNLO Nijm93

µd(µN) 0.857406(1) 0.856-
0.862

0.853-
0.860 0.848

J(s)
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⇡
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1 ⌧a
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q2
2 + m2

⇡

(q2 ⇥ q) + (1$ 2)

LM1 = �eL2(N†�i✏
ijkFjkN)(N†N)


