Recent results in chiral EFT for the two-nucleon system

Dear reader,
These are the slides from my presentation. They do not represent the entire content of the talk. What was actually said is quite important.
Daniel Phillips

OHIO
UNIVERSITY

RESEARCH SUPPORTED BY THE US DEPARTMENT OF ENERGY

Chiral EFT for nuclear physics: desirable features

Chiral EFT for nuclear physics: desirable features

- Consequences of QCD's spontaneously and explicitly broken chiral symmetry for $\mathrm{A} \geq 2$
- Expansion in $\mathrm{M}_{\mathrm{l}} / \mathrm{M}_{\mathrm{hi}}$
- Renormalizable order-by-order in this expansion parameter

Chiral EFT for nuclear physics: desirable features

- Consequences of QCD's spontaneously and explicitly broken chiral symmetry for $\mathrm{A} \geq 2$
- Expansion in $\mathrm{M}_{\mathrm{l}} / \mathrm{M}_{\mathrm{hi}}$
- Renormalizable order-by-order in this expansion parameter
- Clean living \rightarrow error estimates, model-independent results

Chiral EFT for nuclear physics: desirable features

- Consequences of QCD's spontaneously and explicitly broken chiral symmetry for $A \geq 2$
- Expansion in $\mathrm{M}_{\mathrm{l}} / \mathrm{M}_{\mathrm{hi}}$
- Renormalizable order-by-order in this expansion parameter
- Clean living \rightarrow error estimates, model-independent results
- χ PT: low scales: m_{π}, p; high scales: $m_{\rho}, M_{N}, M_{\Delta}-M_{N} \equiv \Lambda_{\chi S B}$

Outline

- The proposal: Weinberg's counting for the NN potential, aka naive dimensional analysis for V
- One-pion exchange and renormalization: how strong interactions taught us to be not-quite-as-naïve
- A "new leading order" and its discontents
- Higher orders in χ EFT: what comes where?
- Selected applications to EM reactions
- Conclusion

χ PT for nuclear forces

χ PT for nuclear forces

$\chi \mathrm{PT} \Rightarrow$ pion interactions are weak at low energy.
Weinberg (1990), apply χ PT to V , i.e. expand it in $\mathrm{P}=\left(\mathrm{p} / \Lambda_{\chi \mathrm{SB}}, \mathrm{m}_{\pi} / \Lambda_{\chi \mathrm{SB}}\right)$

$$
\begin{gathered}
\left(E-H_{0}\right)|\psi\rangle=V|\psi\rangle \\
V=V^{(0)}+V^{(2)}+V^{(3)}+\ldots
\end{gathered}
$$

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)

χ PT for nuclear forces

$\chi \mathrm{PT} \Rightarrow$ pion interactions are weak at low energy. Weinberg (1990), apply χ PT to V, i.e. expand it in $\mathrm{P}=\left(\mathrm{p} / \Lambda_{\chi \mathrm{sB}}, \mathrm{m}_{\pi} / \Lambda_{\chi \mathrm{sB}}\right)$

$$
\begin{gathered}
\left(E-H_{0}\right)|\psi\rangle=V|\psi\rangle \\
V=V^{(0)}+V^{(2)}+V^{(3)}+\ldots
\end{gathered}
$$

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)

- Leading-order V:

$$
\left\langle\mathbf{p}^{\prime}\right| V|\mathbf{p}\rangle=C^{3 S 1} P_{3 S 1}+C^{1 S 0} P_{1 S 0}+V_{1 \pi}\left(\mathbf{p}^{\prime}-\mathbf{p}\right)
$$

Higher orders in V

	Two-nucleon force	Three-nucleon force	Four-nucleon force
\mathbf{P}^{0}	$\times+\ldots$	CONSISTENT	$\text { NFS, } \overline{4 N F S}$
\mathbf{P}^{2}	$\times 1+1+1+t$	SEE TALK O	H. KREBS
\mathbf{P}^{3}	\% 1	F-f	-
\mathbf{P}^{4}	$\begin{aligned} & \text { X }+1+1+1 . . \\ & k+1+1+\ldots . . \end{aligned}$	work in progress...	Courtesy E. Epelbaum $+k+1+F \mid=$

2 nucleon force $\gg 3$ nucleon force >4 nucleon force...

Higher orders in V

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)

	Two-nucleon force	Three-nucleon force	Four-nucleon force
\mathbf{P}^{0}	$\times+\ldots$	CONSISTENT	$\text { NFS, } \overline{4 N F S,}$
\mathbf{P}^{2}	$\times 1+1$ +1 + +	SEE TALK O	H. KREBS
\mathbf{P}^{3}	\% 1	-6-1 - \%	-
\mathbf{P}^{4}	$\begin{aligned} & \text { X }+1+1+\cdots \\ & k+1+\infty+\ldots . . \end{aligned}$	work in progress...	Courtesy E. Epelbaum

Higher orders in V

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)
Two-nucleon force

- No difficulties with counting for long-distance pieces

Higher orders in V

（Ordonez，Ray，van Kolck；Kaiser，Brockmann，Weise；Epelbaum，Meissner，Gloeckle；Entem，Machleidt）

	Tranue	Treamemeon fore	ourn
${ }^{p}$	XH	CONSISTENT BNFS，$\overline{4 N E S}$ ， SEE TALK OF H．KREBS	
${ }^{2}$			
${ }^{2}$	d l_{1}	HHHX＊	－
			H⿰木NW洲－

－No difficulties with counting for long－distance pieces
－Here I present discussion of＂Delta－less＂potential
"Weinberg" counting to $\mathrm{O}\left(\mathrm{P}^{4}\right)\left[\mathrm{N}^{3} \mathrm{LO}\right]$

"Weinberg" counting to $O\left(\mathrm{P}^{4}\right)\left[\mathrm{N}^{3} \mathrm{LO}\right]$

Epelbaum, Meissner, Gloeckle (2005)

"Weinberg" counting to $\mathrm{O}\left(\mathrm{P}^{4}\right)$ [$\left.\mathrm{N}^{3} \mathrm{LO}\right]$

Epelbaum, Meissner, Gloeckle (2005)

"Weinberg" counting to $\mathrm{O}\left(\mathrm{P}^{4}\right)\left[\mathrm{N}^{3} \mathrm{LO}\right]$

Epelbaum, Meissner, Gloeckle (2005)

Successes in A=2-4

Successes in A=2-4

Epelbaum, Meissner, Gloeckle (2005)

- $\mathrm{N}^{3} \mathrm{LO}$ potential, χ^{2} /dof comparable to AV18.

Entem, Machleidt (2003)

Successes in A=2-4

- $\mathrm{N}^{3} \mathrm{LO}$ potential, $\chi^{2} /$ dof comparable to AV18.

Entem, Machleidt (2003)

- Reproduce $A=3$ and 4 observables

Epelbaum, Nogga, et al.(2002)

	NLO	NNLO	"Exp."
${ }^{3} \mathrm{H}$	$-7.53 . .-8.54$	-8.68	-8.68
${ }^{4} \mathrm{He}$	$-23.87 . .-29.57$	$-29.51 . .-29.98$	-29.6

Successes in $A=2-4$

- $\mathrm{N}^{3} \mathrm{LO}$ potential, χ^{2} /dof comparable to AV18.

Entem, Machleidt (2003)

- Reproduce $A=3$ and 4 observables

Epelbaum, Nogga, et al.(2002)

Successes in $A=2-4$

- $\mathrm{N}^{3} \mathrm{LO}$ potential, $\chi^{2} /$ dof comparable to AV18.

Entem, Machleidt (2003)

- Reproduce $\mathrm{A}=3$ and 4 observables

Epelbaum, Nogga, et al.(2002)

- Applications to many-body systems: see talk of R. Roth

But is it a (chiral) EFT?

But is it a (chiral) EFT?

- Existence of perturbative expansion?
- Renormalized?
- a priori error estimates?

But is it a (chiral) EFT?

- Existence of perturbative expansion?
- Renormalized?
- a priori error estimates?

Need to go back and re-examine why we iterate one-pion exchange, in order to obtain a welldefined, renormalized (i.e. cutoff-independent) leading order around which we can perturb

But is it a (chiral) EFT?

- Existence of perturbative expansion?
- Renormalized?
- a priori error estimates?

Need to go back and re-examine why we iterate one-pion exchange, in order to obtain a welldefined, renormalized (i.e. cutoff-independent) leading order around which we can perturb

- Note: don’t need $\Lambda \rightarrow \infty$, just Λ varied by a factor ~ 2 around $\Lambda_{X S B}$

But is it a (chiral) EFT?

- Existence of perturbative expansion?
- Renormalized?
- a priori error estimates?

Need to go back and re-examine why we iterate one-pion exchange, in order to obtain a welldefined, renormalized (i.e. cutoff-independent) leading order around which we can perturb

- Note: don’t need $\Lambda \rightarrow \infty$, just Λ varied by a factor ~ 2 around $\Lambda_{x S B}$

Goal: once we understand what terms are present in $\chi E F T$ up to some order, we can include them in a potential, and use it with a low cutoff in order to do nuclear physics calculations

Fun facts about one-pion exchange

$$
\begin{array}{r}
V(\mathbf{r})=\tau_{1}^{a} \tau_{2}^{a}\left[\sigma_{1} \cdot \sigma_{2} Y(r)+S_{12}(\hat{r}) T(r)\right] \\
S_{12}(\hat{r})=3\left(\sigma_{1} \cdot \hat{r}\right)\left(\sigma_{2} \cdot \hat{r}\right)-\sigma_{1} \cdot \sigma_{2} \\
Y(r)=\frac{g_{A}^{2} m_{\pi}^{2}}{48 \pi f_{\pi}^{2}} \frac{e^{-m_{\pi} r}}{r} \\
T(r)=\frac{g_{A}^{2}}{16 \pi f_{\pi}^{2}} e^{-m_{\pi} r}\left[\frac{m_{\pi}^{2}}{3 r}+\frac{m_{\pi}}{r^{2}}+\frac{1}{r^{3}}\right]
\end{array}
$$

Fun facts about one-pion exchange

$$
\begin{array}{r}
V(\mathbf{r})=\tau_{1}^{a} \tau_{2}^{a}\left[\sigma_{1} \cdot \sigma_{2} Y(r)+S_{12}(\hat{r}) T(r)\right] \\
S_{12}(\hat{r})=3\left(\sigma_{1} \cdot \hat{r}\right)\left(\sigma_{2} \cdot \hat{r}\right)-\sigma_{1} \cdot \sigma_{2} \\
Y(r)=\frac{g_{A}^{2} m_{\pi}^{2}}{48 \pi f_{\pi}^{2}} \frac{e^{-m_{\pi} r}}{r} \\
T(r)=\frac{g_{A}^{2}}{16 \pi f_{\pi}^{2}} e^{-m_{\pi} r}\left[\frac{m_{\pi}^{2}}{3 r}+\frac{m_{\pi}}{r^{2}}+\frac{1}{r^{3}}\right]
\end{array}
$$

Fun facts about one-pion exchange

$$
\begin{array}{r}
V(\mathbf{r})=\tau_{1}^{a} \tau_{2}^{a}\left[\sigma_{1} \cdot \sigma_{2} Y(r)+S_{12}(\hat{r}) T(r)\right] \\
S_{12}(\hat{r})=3\left(\sigma_{1} \cdot \hat{r}\right)\left(\sigma_{2} \cdot \hat{r}\right)-\sigma_{1} \cdot \sigma_{2} ; \\
Y(r)=\frac{g_{A}^{2} m_{\pi}^{2}}{48 \pi f_{\pi}^{2}} \frac{e^{-m_{\pi} r}}{r} \\
T(r)=\frac{g_{A}^{2}}{16 \pi f_{\pi}^{2}} e^{-m_{\pi} r}\left[\frac{m_{\pi}^{2}}{3 r}+\frac{m_{\pi}}{r^{2}}+\frac{1}{r^{3}}\right]
\end{array}
$$

- Momentum scales present: m_{π} and $\Lambda_{N N}=\frac{16 \pi f_{\pi}^{2}}{g_{A}^{2} M} \approx 300 \mathrm{MeV}$
- χ SB predicts $1 / r^{3}$ potential that couples waves with $\Delta L=2$
- Tensor part of 1π exchange does not appear for $S=0$
- $1 / r^{3}$ part of 1π exchange "screened" by centrifugal barrier for large L

The quest for leading order I

The quest for leading order I

- Iterates of one-pion exchange become comparable with treelevel for momenta of order $\Lambda_{\text {NN...in }}$ low partial waves

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

The quest for leading order I

- Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN}...in low partial waves

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

- To describe processes for p \sim ^nn need to iterate (tensor part of) one-pion exchange to obtain the LO result

The quest for leading order I

- Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN}...in low partial waves

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

- To describe processes for p \sim ^nn need to iterate (tensor part of) one-pion exchange to obtain the LO result
- Λ_{NN} is a new low-energy scale, thus this is not $\chi \mathrm{PT}$. But, higherorder pieces of chiral potential suppressed by $\Lambda_{N N} / \Lambda_{\chi} \mathrm{SB}$.

The quest for leading order I

- Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN}...in low partial waves

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

- To describe processes for $\mathrm{p} \sim \Lambda_{\mathrm{NN}}$ need to iterate (tensor part of) one-pion exchange to obtain the LO result
- Λ_{nN} is a new low-energy scale, thus this is not $\chi \mathrm{PT}$. But, higherorder pieces of chiral potential suppressed by $\Lambda_{\mathrm{NN}} / \Lambda_{\chi} \mathrm{SB}$.
- Perturbation theory should also be OK for: (a) higher partial waves, (b) 1π exchange in singlet waves, (c) $p<\Lambda_{N N}$

The quest II: to iterate or not to iterate

The quest II: to iterate or not to iterate

 "Sum up" Vope + VopeGoVope $+\ldots$.

- Do this in ${ }^{3} S_{1},{ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2}$, and possibly D waves

The quest II: to iterate or not to iterate

- "Sum up" Vope $+V_{\text {ope }} G_{0} V_{\text {ope }}+\ldots$.

- Do this in ${ }^{3} S_{1},{ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2}$, and possibly D waves
- In "high" partial waves, series dominated by first term

The quest II: to iterate or not to iterate

- "Sum up" Vope $+V_{\text {OPE }} G_{0} V_{\text {ope }}+\ldots$.

- Do this in ${ }^{3} S_{1},{ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2}$, and possibly D waves
- In "high" partial waves, series dominated by first term

Kaiser, Brockmann, Weise (1997)

Standard хPT

The quest III: S waves

Beane, Bedaque, Savage, van Kolck (2002);
Pavon Valderrama, Ruiz Arriola (2005)

The quest III: S waves

Beane, Bedaque, Savage, van Kolck (2002);
Pavon Valderrama, Ruiz Arriola (2005)

- Stable for wide range of cutoffs

Subtractive renormalization numerically efficient

Yang, Elster, Phillips (2007)

The quest III: S waves

Beane, Bedaque, Savage, van Kolck (2002);
Pavon Valderrama, Ruiz Arriola (2005)

- Stable for wide range of cutoffs
- Subtractive renormalization numerically efficient

Yang, Elster, Phillips (2007)

- One-pion exchange weak in ${ }^{1} S_{0}$

χ EFT deuteron wave functions at leading order

Pavon Valderrama, Nogga, Ruiz Arriola, DP, EPJA 36, 315 (2008)

The quest IV: solving the $1 / r^{3}$ potential

Case (1950), Sprung et al. (1994),

Beane et al. (2001),

- Attractive case, for $r \ll 1 / \Lambda_{N N}$

$$
u_{1}(r)=\left(\Lambda_{N N} r\right)^{3 / 4} \cos \left(4 \sqrt{\frac{1}{\Lambda_{N N} r}}\right) ; u_{2}(r)=\left(\Lambda_{N N} r\right)^{3 / 4} \sin \left(4 \sqrt{\frac{1}{\Lambda_{N N} r}}\right)
$$

- Equally regular solutions, need boundary condition to fix phase
- c.f. $j_{l}(k r)$ and $n_{l}(k r)$ for plane waves as $\mathrm{r} \rightarrow 0$
- Repulsive, for $r \ll 1 / \Lambda_{N N}$

$$
u_{1}(r)=\left(\Lambda_{N N} r\right)^{3 / 4} \exp \left(\sqrt[4]{\frac{1}{\Lambda_{N N} r}}\right) ; u_{2}(r)=\left(\Lambda_{N N} r\right)^{3 / 4} \exp \left(-4 \sqrt{\frac{1}{\Lambda_{N N} r}}\right)
$$

- Still need boundary condition to fix "phase", but results insensitive to choice

The quest V : power counting

The quest V : power counting

Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.
Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

The quest V: power counting

Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.
Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

- "New leading order": 1π exchange plus contact interactions, iterated, in 3S1, 3P0 and 3P2
- Meanwhile: 1π exchange, iterated, in 3P1; contact interaction, iterated, in 150 .

The quest V: power counting

 $\Lambda\left[\mathrm{fm}^{-1}\right]$

Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.
Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

- "New leading order": 1π exchange plus contact interactions, iterated, in 3S1, 3P0 and 3P2
- Meanwhile: 1π exchange, iterated, in 3P1; contact interaction, iterated, in 1S0.
- Renormalization-group analysis

Birse

The quest V : power counting

$\Lambda\left[\mathrm{fm}^{-1}\right]$

Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.
Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

- "New leading order": 1π exchange plus contact interactions, iterated, in 3S1, 3P0 and 3P2
- Meanwhile: 1π exchange, iterated, in 3P1; contact interaction, iterated, in 150 .
- Renormalization-group analysis

Birse

Moral: NDA doesn't predict scaling of short-distance operators needed for renormalization if LO wave functions are not plane waves

Attempts to circumvent

Attempts to circumvent

- Make one-pion exchange softer, by introducing a Pauli-Villars regulator. Keep regulator mass finite

Beane, Vuorinen, Kaplan (2008)

- Can even make it soft enough that it appears perturbative.
- Worked out for ${ }^{3} S_{1}-{ }^{3} D_{1}-\varepsilon_{1}$ up to NNLO

Attempts to circumvent

- Make one-pion exchange softer, by introducing a Pauli-Villars regulator. Keep regulator mass finite
- Can even make it soft enough that it appears perturbative.
- Worked out for ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{D}_{1}-\varepsilon_{1}$ up to NNLO
- Employ relativistic propagator in NN scattering equation \Rightarrow integrals in scattering equation are also softened

Attempts to circumvent

- Make one-pion exchange softer, by introducing a Pauli-Villars regulator. Keep regulator mass finite
- Can even make it soft enough that it appears perturbative.
- Worked out for ${ }^{3} S_{1}-{ }^{3} D_{1}-\varepsilon_{1}$ up to NNLO
- Employ relativistic propagator in NN scattering equation \Rightarrow integrals in scattering equation are also softened

Epelbaum, Gegelia (2012)

- In UV problem becomes solution of $1 / r^{2}$ potential in $2 d$
- Still some additional contact terms required, e.g. in ${ }^{3} P_{0}$

Attempts to circumvent

- Make one-pion exchange softer, by introducing a Pauli-Villars regulator. Keep regulator mass finite
- Can even make it soft enough that it appears perturbative.
- Worked out for ${ }^{3} S_{1}-{ }^{3} D_{1}-\varepsilon_{1}$ up to NNLO
- Employ relativistic propagator in NN scattering equation \Rightarrow integrals in scattering equation are also softened

Epelbaum, Gegelia (2012)

- In UV problem becomes solution of $1 / r^{2}$ potential in 2 d
- Still some additional contact terms required, e.g. in ${ }^{3} P_{0}$
- Argue that cutoff should never get above m_{ρ} Epelbaum, Meissner (2006)

Sub-leading orders

Sub-leading orders

- No argument about power counting of "long-distance" parts of potential, once particle content of EFT is fixed

Sub-leading orders

- No argument about power counting of "long-distance" parts of potential, once particle content of EFT is fixed
- Since they are small (down by at least two orders in the chiral expansion), can compute their matrix elements in perturbation theory, between leading-order wave functions

Sub-leading orders

- No argument about power counting of "long-distance" parts of potential, once particle content of EFT is fixed
- Since they are small (down by at least two orders in the chiral expansion), can compute their matrix elements in perturbation theory, between leading-order wave functions
- But, need to ensure these are renormalized, i.e. matrix elements have regulator dependence removed. What NN contact interactions are necessary to do that?

Sub-leading orders

- No argument about power counting of "long-distance" parts of potential, once particle content of EFT is fixed
- Since they are small (down by at least two orders in the chiral expansion), can compute their matrix elements in perturbation theory, between leading-order wave functions
- But, need to ensure these are renormalized, i.e. matrix elements have regulator dependence removed. What NN contact interactions are necessary to do that?
- Analysis tool: co-ordinate space matrix elements of $\mathrm{V}^{(3)}$ (say) between $\left|\psi^{(0)}\right\rangle$
- Equivalent momentum-space formulation

An example: sub-leading TPE in 3S1

An example: sub-leading TPE in 3S1

- As $r \rightarrow 0$, sub-leading 2π exchange $M V^{(3)}(r) \sim \frac{\Lambda_{N N}}{\Lambda_{\chi}^{4}} \frac{1}{r^{6}}$

An example: sub-leading TPE in 3S1

$\frac{d}{d r_{c}}$

- As $r \rightarrow 0$, sub-leading 2π exchange $M V^{(3)}(r) \sim \frac{\Lambda_{N N}}{\Lambda_{\chi}^{4}} \frac{1}{r^{6}}$

$$
\begin{aligned}
&\left\langle\psi^{(0)}\right| M V^{(3)}\left|\psi^{(0)}\right\rangle \sim \int_{r_{c}} d r\left(\Lambda_{N N} r\right)^{3 / 2}\left(1+\alpha_{2} k^{2} r^{2}+\ldots\right) \frac{\Lambda_{N N}}{\Lambda_{\chi}^{4}} \frac{1}{r^{6}} \\
& \sim \frac{\Lambda_{N N}^{5 / 2}}{\Lambda_{\chi}^{4}} \frac{1}{r_{c}^{7 / 2}}+\tilde{\alpha}_{2} k^{2} \frac{\Lambda_{N N}^{5 / 2}}{\Lambda_{\chi}^{4}} \frac{1}{r_{c}^{3 / 2}}+\text { finite }
\end{aligned}
$$

An example: sub-leading TPE in 3S1

- As $r \rightarrow 0$, sub-leading 2π exchange $M V^{(3)}(r) \sim \frac{\Lambda_{N N}}{\Lambda_{\chi}^{4}} \frac{1}{r^{6}}$

$$
\begin{aligned}
&\left\langle\psi^{(0)}\right| M V^{(3)}\left|\psi^{(0)}\right\rangle \sim \int_{r_{c}} d r\left(\Lambda_{N N} r\right)^{3 / 2}\left(1+\alpha_{2} k^{2} r^{2}+\ldots\right) \frac{\Lambda_{N N}}{\Lambda_{\chi}^{4}} \frac{1}{r^{6}} \\
& \sim \frac{\Lambda_{N N}^{5 / 2}}{\Lambda_{\chi}^{4}} \frac{1}{r_{c}^{7 / 2}}+\tilde{\alpha}_{2} k^{2} \frac{\Lambda_{N N}^{5 / 2}}{\Lambda_{\chi}^{4}} \frac{1}{r_{c}^{3 / 2}}+\text { finite }
\end{aligned}
$$

- Need two counterterms, same as in NDA, although scaling of matrix element with r_{c} modified

An example: sub-leading TPE in 3S1

- As $r \rightarrow 0$, sub-leading 2π exchange $M V^{(3)}(r) \sim \frac{\Lambda_{N N}}{\Lambda_{\chi}^{4}} \frac{1}{r^{6}}$

$$
\begin{aligned}
&\left\langle\psi^{(0)}\right| M V^{(3)}\left|\psi^{(0)}\right\rangle \sim \int_{r_{c}} d r\left(\Lambda_{N N} r\right)^{3 / 2}\left(1+\alpha_{2} k^{2} r^{2}+\ldots\right) \frac{\Lambda_{N N}}{\Lambda_{\chi}^{4}} \frac{1}{r^{6}} \\
& \sim \frac{\Lambda_{N N}^{5 / 2}}{\Lambda_{\chi}^{4}} \frac{1}{r_{c}^{7 / 2}}+\tilde{\alpha}_{2} k^{2} \frac{\Lambda_{N N}^{5 / 2}}{\Lambda_{\chi}^{4}} \frac{1}{r_{c}^{3 / 2}}+\text { finite }
\end{aligned}
$$

- Need two counterterms, same as in NDA, although scaling of matrix element with r_{c} modified
- Real difference in P waves, where $\sim r^{2}$ gets replaced by $\sim r^{3 / 4}$

Birse (2006)

- Two NN contact interactions needed to renormalize $\mathrm{V}^{(3)}$ in attractive triplet P waves

Shallow poles: why the ${ }^{1} S_{0}$ is special

Shallow poles: why the ${ }^{1} S_{0}$ is special

- Let's talk about the ${ }^{1} \mathrm{~S}_{0}$: almost a bound state, but one-pion exchange is weak (perturbative?) there.

- Existence of shallow pole results from tuning of contact interaction to be $\mathrm{O}\left(\mathrm{P}^{-1}\right)$, stronger than indicated by NDA

Shallow poles: why the ${ }^{1} S_{0}$ is special

- Let's talk about the ${ }^{1} \mathrm{~S}_{0}$: almost a bound state, but one-pion exchange is weak (perturbative?) there.

- Existence of shallow pole results from tuning of contact interaction to be $\mathrm{O}\left(\mathrm{P}^{-1}\right)$, stronger than indicated by NDA
- $\left|\psi^{(0)}\right\rangle \sim 1 / r$ at short distances \Rightarrow matrix elements very divergent

Shallow poles: why the ${ }^{1} \mathrm{~S}_{0}$ is special

- Let's talk about the ${ }^{1} \mathrm{~S}_{0}$: almost a bound state, but one-pion exchange is weak (perturbative?) there.

- Existence of shallow pole results from tuning of contact interaction to be $\mathrm{O}\left(\mathrm{P}^{-1}\right)$, stronger than indicated by NDA
- $\left|\psi^{(0)}\right\rangle \sim 1 / r$ at short distances \Rightarrow matrix elements very divergent

Birse (2009, 2010), Pavon Valderrama (2010), Long \& Yang (2011)

- $C_{2} p^{2}, C_{4} p^{4}$, etc. enhanced by two orders c.f. NDA

Shallow poles: why the ${ }^{1} S_{0}$ is special

- Let's talk about the ${ }^{1} \mathrm{~S}_{0}$: almost a bound state, but one-pion exchange is weak (perturbative?) there.

- Existence of shallow pole results from tuning of contact interaction to be $\mathrm{O}\left(\mathrm{P}^{-1}\right)$, stronger than indicated by NDA
- $\left|\psi^{(0)}\right\rangle \sim 1 / r$ at short distances \Rightarrow matrix elements very divergent

Birse (2009, 2010), Pavon Valderrama (2010), Long \& Yang (2011)

- $C_{2} p^{2}, C_{4} p^{4}$, etc. enhanced by two orders c.f. NDA
- Since deuteron is also fine-tuned there is a similar (but not the same!) enhancement of contact interactions in the 3S1 channel

Summary of results I

ORDER	INCLUDED
P^{-1}	$\mathrm{C}^{150}, \mathrm{C}^{3 S 1}, 1 \pi$ exchange
$\mathrm{P}^{-1 / 2}$	$\mathrm{C}^{3 \mathrm{PO}}, \mathrm{C}^{3 \mathrm{P} 2}$
P^{0}	$\mathrm{C}_{2}{ }^{150}$
$\mathrm{P}^{1 / 2}$	$\mathrm{C}_{2}{ }^{351}$
$\mathrm{P}^{3 / 2}$	$\mathrm{C}_{2}{ }^{3 \mathrm{PO}}, \mathrm{C}_{2}{ }^{3 P 2}$
P^{2}	Renormalized leading 2π exchange, $\mathrm{C}^{1 \mathrm{P}^{1}}, \mathrm{C}^{3 \mathrm{P} 1}, \mathrm{C}_{4}{ }^{1 \mathrm{SO}}, \mathrm{C}^{81}$
$\mathrm{P}^{5 / 2}$	$\mathrm{C}_{4}{ }^{351}$
P^{3}	Renormalized sub-leading 2π exchange

Summary of results III

Summary of results III

r_{c} dependence in "Weinberg" approach not under control in, e.g., ${ }^{3} P_{0}$

Summary of results IV: ${ }^{1} \mathrm{~S}_{0}$ phases

Pavon Valderrama (2011)

Summary of results IV: ${ }^{1} \mathrm{~S}_{0}$ phases

Pavon Valderrama (2011)

Long and Yang (2012)

What I didn't tell you

What I didn't tell you

- Disagreement about counting for waves where one-pion exchange is repulsive (e.g. ${ }^{3} \mathrm{P}_{1}$); number of counterterms needed to stabilize ${ }^{3} \mathrm{P}_{2}-{ }^{-} \mathrm{F}_{2}$
- How much does fine-tuning in ${ }^{3} S_{1}$ affect scaling of contact operators?
- What to do with D waves

What is leading order? $\mathrm{O}\left(\mathrm{P}^{-1}\right), \mathrm{O}\left(\mathrm{P}^{-1 / 2}\right), \mathrm{O}\left(\mathrm{P}^{0}\right)$?

What I didn't tell you

- Disagreement about counting for waves where one-pion exchange is repulsive (e.g. ${ }^{3} \mathrm{P}_{1}$); number of counterterms needed to stabilize ${ }^{3} \mathrm{P}_{2}-{ }^{-} \mathrm{F}_{2}$
- How much does fine-tuning in ${ }^{3} S_{1}$ affect scaling of contact operators?
- What to do with D waves
- What is leading order? $\mathrm{O}\left(\mathrm{P}^{-1}\right), \mathrm{O}\left(\mathrm{P}^{-1 / 2}\right), \mathrm{O}\left(\mathrm{P}^{0}\right)$?
- Other proposals: Albaladejo \& Oller: N/D method; Szpigel \& Timoteo: modified ${ }^{1} S_{0}$ power counting in subtractive method

What I didn't tell you

- Disagreement about counting for waves where one-pion exchange is repulsive (e.g. ${ }^{3} \mathrm{P}_{1}$); number of counterterms needed to stabilize ${ }^{3} \mathrm{P}_{2}-{ }^{-}{ }^{3}{ }_{2}$
- How much does fine-tuning in ${ }^{3} S_{1}$ affect scaling of contact operators?
- What to do with D waves
- What is leading order? $\mathrm{O}\left(\mathrm{P}^{-1}\right), \mathrm{O}\left(\mathrm{P}^{-1 / 2}\right), \mathrm{O}\left(\mathrm{P}^{0}\right)$?
- Other proposals: Albaladejo \& Oller: N/D method; Szpigel \& Timoteo: modified ${ }^{1} S_{0}$ power counting in subtractive method
- Breakdown of expansion for long-distance V : $r \approx 0.9 \mathrm{fm}$

ХEFT expansion for probes

χ EFT expansion for probes

$$
\mathcal{M}_{\mu}=\langle\psi| J_{\mu}|\psi\rangle
$$

χ EFT expansion for probes

$$
\mathcal{M}_{\mu}=\langle\psi| J_{\mu}|\psi\rangle
$$

$$
J_{\mu}=J_{\mu}^{(0)}+J_{\mu}^{(1)}+J_{\mu}^{(2)}+\ldots \quad|\psi\rangle=|\psi\rangle^{(0)}+|\psi\rangle^{(2)}+\ldots
$$

χ EFT expansion for probes

$$
\mathcal{M}_{\mu}=\langle\psi| J_{\mu}|\psi\rangle
$$

$$
J_{\mu}=J_{\mu}^{(0)}+J_{\mu}^{(1)}+J_{\mu}^{(2)}+\ldots \quad|\psi\rangle=|\psi\rangle^{(0)}+|\psi\rangle^{(2)}+\ldots
$$

χ EFT expansion for probes

$$
\mathcal{M}_{\mu}=\langle\psi| J_{\mu}|\psi\rangle
$$

$$
J_{\mu}=J_{\mu}^{(0)}+J_{\mu}^{(1)}+J_{\mu}^{(2)}+\ldots \quad|\psi\rangle=|\psi\rangle^{(0)}+|\psi\rangle^{(2)}+\ldots
$$

NeEd to Compute Both J_{μ} AND $\mid \psi>$ TO ORDER N TO GET
\mathcal{M}_{μ} TO ORDER N
χ EFT for $\mathrm{J}_{0}{ }^{(\mathrm{s})}$

χ EFT for $\mathrm{J}_{0}{ }^{(\mathrm{s})}$

- O(e): one-body (impulse) current
- $\mathrm{O}\left(\mathrm{eP}^{3}\right): 2 \mathrm{~B}$ mechanism enters, but no free parameters SUPPRESSED BY $1 / \mathrm{M}_{\mathrm{N}}$

Phillips (2003)

χ EFT for $\mathrm{J}_{0}{ }^{(\mathrm{s})}$

- O(e): one-body (impulse) current
- $\mathrm{O}\left(\mathrm{eP}^{3}\right): 2 \mathrm{~B}$ mechanism enters, but no free parameters

$$
\text { SUPPRESSED BY } 1 / M_{N}
$$

Phillips (2003)

- $\mathrm{O}\left(\mathrm{eP}^{4}\right)$: Two-pion exchange pieces of $\mathrm{J}_{0}{ }^{(\mathrm{s})}$. VANISH!

χ EFT for $\mathrm{J}_{0}{ }^{(\mathrm{s})}$
- O(e): one-body (impulse) current
- $\mathrm{O}\left(\mathrm{eP}^{3}\right): 2 \mathrm{Z}$ mechanism enters, but no free parameters SUPPRESSED BY $1 / M_{N}$

Phillips (2003)

- $\mathrm{O}\left(\mathrm{eP}^{4}\right)$: Two-pion exchange pieces of $\mathrm{J}_{0}^{(s)}$. VANISH!
- O(eP5): Short-distance parts of operators

IN NDA COUNTING FOR SHORT-DISTANCE OPERATORS

$O(e)$

$O\left(e P^{3}\right)$
$O\left(e P^{5}\right)$

Renormalizing $\mathrm{G}_{\mathrm{c}} / \mathrm{G}_{\mathrm{Q}}$

- Adjust $\mathrm{O}\left(\mathrm{eP}^{5}\right)$ contact term to reproduce Q_{d}

Renormalizing $\mathrm{Gc}_{\mathrm{c}} / \mathrm{G}_{\mathrm{Q}}$

- Adjust $\mathrm{O}\left(\mathrm{eP}^{5}\right)$ contact term to reproduce Q_{d}
- Ratio is largely independent of model for $\mathrm{q}<600$ MeV
- G_{c} / G_{Q} to 3% at $\mathrm{Q}=0.39 \mathrm{GeV}$

Confronting experiment

Zhang et al., PRL (2011)

$$
\begin{gathered}
\tilde{T}_{20 R}=-3 \frac{\tilde{T}_{20}}{\sqrt{2} Q_{d}|Q|^{2}} \\
\leftrightarrow G_{C} / G_{Q}
\end{gathered}
$$

Confronting experiment

Zhang et al., PRL (2011)

$$
\tilde{T}_{20 R}=-3 \frac{\tilde{T}_{20}}{\sqrt{2} Q_{d}|Q|^{2}}
$$

$\leftrightarrow G_{C} / G_{Q}$

- Prediction for $\mathrm{G}_{\mathrm{c}} \leftrightarrow \mathrm{A}$ at low Q^{2} : Hall A experiment

Yang, Kaiser, Park, Phillips (in preparation)

- Application to f_{L} in (e,e'p)

Gm to same order

Gm to same order

Koelling, Epelbaum, Phillips (in preparation)

Summary and omissions

Summary and omissions

- χ EFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama

Summary and omissions

- χ EFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama
- πd scattering including isospin violation $\rightarrow \mathrm{a}^{+}, \mathrm{gc}_{\mathrm{c}}$

Baru, Hanhart, Hoferichter, Kubis, Nogga, Phillips (2011-12)

Summary and omissions

- χ EFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama
- πd scattering including isospin violation $\rightarrow \mathrm{a}^{+}$, gc_{c}

Baru, Hanhart, Hoferichter, Kubis, Nogga, Phillips (2011-12)

- Threshold M1 capture; talk of L. Girlanda

Summary and omissions

- χ EFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama
- πd scattering including isospin violation $\rightarrow \mathrm{a}^{+}, \mathrm{gc}$

Baru, Hanhart, Hoferichter, Kubis, Nogga, Phillips (2011-12)

- Threshold M1 capture; talk of L. Girlanda
- Weak capture on deuterium: $\Gamma_{\mathrm{D}=399(3) \mathrm{s}^{-1} \text { in a } \chi E F T ~}^{\text {E }}$ calculation up to $\mathrm{O}\left(\mathrm{P}^{3}\right)$; talk of P. Kammel

Summary and omissions

- χ EFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama
- πd scattering including isospin violation $\rightarrow \mathrm{a}^{+}, \mathrm{gc}$ Baru, Hanhart, Hoferichter, Kubis, Nogga, Phillips (2011-12)
- Threshold M1 capture; talk of L. Girlanda
- Weak capture on deuterium: $\Gamma_{\mathrm{D}=399(3) \mathrm{s}^{-1} \text { in a } \chi E F T ~}^{\text {E }}$ calculation up to $\mathrm{O}\left(\mathrm{P}^{3}\right)$; talk of P. Kammel

Marcucci et al., Phys. Rev. Lett. (2012)

- Application of electroweak operators in $A=3, \ldots$ ongoing

Summary and omissions

- χ EFT demonstrably renormalized for wide range of regulator parameters (finally!)
- Details: WG talks of B. Long, M. Pavon Valderrama
- πd scattering including isospin violation $\rightarrow \mathrm{a}^{+}, \mathrm{gc}$ Baru, Hanhart, Hoferichter, Kubis, Nogga, Phillips (2011-12)
- Threshold M1 capture; talk of L. Girlanda
- Weak capture on deuterium: $\Gamma_{\mathrm{D}=399(3) \mathrm{s}^{-1} \text { in a } \chi E F T ~}^{\text {E }}$ calculation up to $\mathrm{O}\left(\mathrm{P}^{3}\right)$; talk of P. Kammel

Marcucci et al., Phys. Rev. Lett. (2012)

- Application of electroweak operators in $A=3, \ldots$ ongoing
- Role of $\Delta(1232)$ in long-range part of V , electroweak operators

Building a better chiral V_{NN}

Building a better chiral V_{NN}

- Three-pion exchange less important than several shortdistance operators
- For V_{NN} accurate to P^{4} relative to leading include everything in "chiral potential" at NNLO plus second contact operators in ${ }^{3} P_{0}$ and ${ }^{3} P_{2}$, third in ${ }^{3} S_{1}$ and ${ }^{1} S_{0}$, and (?) 2 in ${ }^{3} D_{2}$
- Most of these additional pieces are in $\mathrm{N}^{3} \mathrm{LO}$ potential
- C.f. Nijmegen phase-shift analysis: chiral two-pion exchange plus similar number of short-distance operators
- Real problems with counting may come in 3NF: more shortdistance operators enter if this counting is correct

BACKUP SLIDES

D Waves

Supplementary phase-shift plots

Supplementary phase-shift plots

$\chi E F T$ for Gc up to $\mathrm{O}\left(\mathrm{eP}^{4}\right)$

- Good Jo convergence
- Gc dominated by $r \sim 1 / m_{\pi}$ physics in this q range
- But we need to constrain interplay of short-distance pieces of charge operator and pionrange physics

DP, J. Phys. G 34, 365 (2007)

Static properties and renormalization

Static properties and renormalization

	Expt.	NNLO	$N^{3} \mathrm{LO}$	$\mathrm{Nijm93}$
$\left\langle\mathrm{r}_{\mathrm{d}}{ }^{2}>_{\mathrm{pt}}(\mathrm{fm})\right.$	$1.9753(10)$	$1.974-$ 1.976	$1.979-$ 1.989	1.970
$\mathrm{Q}_{\mathrm{d}}\left(\mathrm{fm}^{2}\right)$	$0.2859(3)$	$0.279-$ 0.282	$0.264-$ 0.268	0.276

Static properties and renormalization

	Expt.	NNLO	$N^{3} \mathrm{LO}$	$\mathrm{Nijm93}$
$\left\langle\mathrm{r}_{\mathrm{d}}{ }^{2}>_{\mathrm{pt}}(\mathrm{fm})\right.$	$1.9753(10)$	$1.974-$ 1.976	$1.979-$ 1.989	1.970
$\mathrm{Q}_{\mathrm{d}}\left(\mathrm{fm}^{2}\right)$	$0.2859(3)$	$0.279-$ 0.282	$0.264-$ 0.268	0.276

Two-body ${ }^{3} \mathrm{~S}_{1} \rightarrow{ }^{3} \mathrm{~S}_{1}$ operator:

Chen, Rupak, and Savage (1999); DP (2007)

G_{M} beyond impulse approximation

	Expt.	NLO	NNLO	Nijm93
$\mu_{\mathrm{d}}\left(\mu_{\mathrm{N}}\right)$	$0.857406(1)$	$0.856-$ 0.862	$0.853-$ 0.860	0.848

G_{m} beyond impulse approximation

	Expt.	NLO	NNLO	Nijm93
$\mu_{\mathrm{d}}\left(\mu_{\mathrm{N}}\right)$	$0.857406(1)$	$0.856-$ 0.862	$0.853-$ 0.860	0.848

- 1% variation consistent with $\mathrm{O}\left(\mathrm{eP}^{4}\right)$ corrections to IA?

G_{M} beyond impulse approximation

	Expt.	NLO	NNLO	Nijm93
$\mu_{\mathrm{d}}\left(\mu_{\mathrm{N}}\right)$	$0.857406(1)$	$0.856-$ 0.862	$0.853-$ 0.860	0.848

- 1% variation consistent with $\mathrm{O}\left(\mathrm{eP}^{4}\right)$ corrections to IA?
- At $\mathrm{O}\left(\mathrm{eP}^{4}\right)$ there are two contributions: a pion-range current and a magnetic-moment counterterm

$$
\begin{gathered}
\mathcal{L}_{M 1}=-e L_{2}\left(N^{\dagger} \sigma_{i} \epsilon^{i j k} F_{j k} N\right)\left(N^{\dagger} N\right) \\
\mathbf{J}_{d_{9}}^{(s)}=-2 e \frac{g_{A} i}{f_{\pi}^{2}} d_{9} \tau_{1}^{a} \tau_{2}^{a} \frac{\sigma_{2} \cdot \mathbf{q}_{2}}{\mathbf{q}_{2}^{2}+m_{\pi}^{2}}\left(\mathbf{q}_{2} \times \mathbf{q}\right)+(1 \leftrightarrow 2)
\end{gathered}
$$

G_{M} beyond impulse approximation

	Expt.	NLO	NNLO	Nijm93
$\mu_{\mathrm{d}}\left(\mu_{\mathrm{N}}\right)$	$0.857406(1)$	$0.856-$ 0.862	$0.853-$ 0.860	0.848

- 1% variation consistent with $\mathrm{O}\left(\mathrm{eP}^{4}\right)$ corrections to IA?
- At $\mathrm{O}\left(\mathrm{eP}^{4}\right)$ there are two contributions: a pion-range current and a magnetic-moment counterterm

$$
\begin{gathered}
\mathcal{L}_{M 1}=-e L_{2}\left(N^{\dagger} \sigma_{i} \epsilon^{i j k} F_{j k} N\right)\left(N^{\dagger} N\right) \\
\mathbf{J}_{d_{9}}^{(s)}=-2 e \frac{g_{A} i}{f_{\pi}^{2}} d_{9} \tau_{1}^{a} \tau_{2}^{a} \frac{\sigma_{2} \cdot \mathbf{q}_{2}}{\mathbf{q}_{2}^{2}+m_{\pi}^{2}}\left(\mathbf{q}_{2} \times \mathbf{q}\right)+(1 \leftrightarrow 2)
\end{gathered}
$$

- d9 poorly constrained from single-nucleon sector

