meson spectra from lattice $\mathbf{Q C D}$

Jozef Dudek
 Old Dominion University \& Jefferson Lab

this talk

not a review !
... rather the ongoing story of the hadron spectrum collaboration's travails on the road to the excited hadron spectrum ...
"Therefore, my dear friend and companion, ... if I should sometimes put on a fool's cap with a bell to it, for a moment or two as we pass along, don't fly off, but rather courteously give me credit for a little more wisdom than appears upon my outside; and as we jog on, either laugh with me, or at me, or in short do any thing, only keep your temper."

Laurence Sterne: The Life and Opinions of Tristram Shandy, Gentleman

hadron spectrum collaboration

Dudek, Edwards, Joo, L. Liu, Mathur, Moir, Peardon,
Richards, Ryan, C. Thomas, Vilaseca, Wallace
$\rightarrow \rightarrow$ "Excited and exotic charmonium spectroscopy from lattice OCD" - JHEP 07 (2012) 126
$\rightarrow \rightarrow$ "The lightest hybrid meson supermultiplet in OCD" - PRD. 84.074023 (2011)
$\rightarrow \rightarrow$ "Isoscalar meson spectroscopy from lattice OCD" - PRD. 83.071504 (2011)
$\rightarrow \rightarrow$ "Toward the excited meson spectrum of dynamical QCD" - PRD.82.034508 (2010)
$\rightarrow \rightarrow$ "Highly excited and exotic meson spectrum from dynamical lattice QCD" - PRL. 103.262001 (2009)
\rightarrow "Hybrid Baryons in QCD" - PRD. 85.054016 (2012)
$\rightarrow \rightarrow$ "Excited state baryon spectroscopy from lattice QCD" - PRD. 84.074508 (2011)
$\rightarrow \rightarrow$ "S and D-wave phase shifts in isospin-2 $\pi \pi$ scattering from lattice QCD" - arXiv:1203.6041 (PRD in press)
$\rightarrow \rightarrow$ "The phase-shift of isospin-2 $\pi \pi$ scattering from lattice OCD" - PRD. 83.071504 (2011)
$\xrightarrow{m} \rightarrow$ "Helicity operators for mesons in flight on the lattice" - PRD. 85.014507 (2012)
$" \rightarrow$ "A novel quark-field creation operator construction for hadronic physics in lattice OCD" - PRD. 80.054506 (2009)

hadron spectrum collaboration

'our' lattices (generated to make spectroscopy as simple as possible)
Clover improved Wilson quarks

$$
\left[\mathcal{O}\left(a^{2}\right) \text { discretisation errors ? }\right]
$$

$$
\begin{aligned}
a_{s} & \sim 0.12 \mathrm{fm} \\
a_{t} & \sim 0.035 \mathrm{fm} \sim \frac{1}{5.8 \mathrm{GeV}}
\end{aligned}
$$

anisotropy (finer in time)
two light dynamical flavours, plus dynamical strange quarks

\& \approx physical pion mass in preparation ...
($48^{3} \times 512$?)

excited meson states

in a finite-volume, expect a discrete spectrum of states
extract from meson two-point correlators

$$
\begin{aligned}
& C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}(0)|0\rangle \quad \mathcal{O}_{i}^{\begin{array}{c}
\text { combination of quark and } \\
\text { with meson quantum num }
\end{array}} \\
& C_{i j}(t)=\sum_{\mathfrak{n}} Z_{i}^{(\mathfrak{n})} Z_{j}^{(\mathfrak{n})} e^{-\underbrace{}_{\mathfrak{n}} t} \\
& \text { finite-volume eigenstates of } H_{\mathrm{QCD}}
\end{aligned}
$$

first practical question:
"can we extract an excited-state spectrum ?"
$\xrightarrow{\prime} \rightarrow$ which correlators should we compute ?
$\rightarrow \rightarrow$ how to extract the spectrum ?

excited meson states - spectrum extraction

variational analysis of a matrix of correlators
'optimal' operator for state $\mathfrak{n} \quad \Omega_{\mathfrak{n}}=\sum_{i} v_{i}^{(\mathfrak{n})} \mathcal{O}_{i}^{\substack{\text { linear combination } \\ \text { of basis ops }}} \mid$
variational solution (c.f. Rayleigh-Ritz)

$$
C(t) v^{(\mathfrak{n})}=\lambda_{\mathfrak{n}}(t) C\left(t_{0}\right) v^{(\mathfrak{n})}
$$

eigenvalues
(principal correlators)

$$
\lambda_{\mathfrak{n}}(t) \sim e^{-E_{\mathfrak{n}}\left(t-t_{0}\right)}
$$

takes advantage of an enforced orthogonality of eigenvectors to distinguish near-degenerate states

$$
v^{(\mathfrak{m})} C\left(t_{0}\right) v^{(\mathfrak{n})}=\delta_{\mathfrak{n}, \mathfrak{m}}
$$

excited meson states - 'simple' operator basis

a simple basis of meson operators - fermion bilinears

can form definite J^{PC} operators

$$
\mathcal{O}_{M}^{J^{P C}}
$$

but the lattice symmetry is cubic \Rightarrow 'subduce' into irreducible representations

$$
\mathcal{O}_{\lambda}^{\Lambda^{P C}}=\sum_{M} \mathcal{S}_{\Lambda, \lambda}^{J, M} \mathcal{O}_{M}^{J^{P C}}
$$

Λ	J
A_{1}	$0,4 \ldots$
T_{1}	$1,3,4 \ldots$
T_{2}	$2,3,4 \ldots$
E	$2,4 \ldots$
A_{2}	$3 \ldots$

principal correlators ($T_{1}^{--}-\mathbf{2 6} \mathbf{~ o p s}$)

principal correlators ($T_{1}^{--}-\mathbf{2 6} \mathbf{~ o p s}$)

$\underline{\text { overlap matrix elements - } T_{1}^{--} \quad Z_{i}^{(n)}=\langle\mathfrak{n}| \mathcal{O}_{i}|0\rangle}$

subduced from $\mathrm{J}=1$
subduced from $\mathrm{J}=3$ subduced from $\mathrm{J}=4$

overlap matrix elements - $T_{1}^{--} \quad Z_{i}^{(\mathfrak{n})}=\langle\mathfrak{n}| \mathcal{O}_{i}|0\rangle$

an isovector meson spectrum

$$
m_{\pi}=396 \mathrm{MeV}
$$

$$
\begin{array}{r}
24^{3} \times 128 \\
L \sim 3 \mathrm{fm} \\
m_{\pi} L \sim 5.7
\end{array}
$$

taking the continuum spin assignments seriously :

泣

scale setting

$m=\frac{a m}{a m_{\Omega}} m_{\Omega}^{\text {phys } .}$
smaller volumes in
Phys.Rev.D82 034508 (2010)

isoscalars too

same methods in the isoscalar sector:

Hadron Spectrum Collab. Phys.Rev. D83 (2011) 111502

isovector meson spectrum - quark mass dependence

volume dependence - T_{1}^{--}

no significant volume dependence ...?

success ... ?

so is this successful ?
$\xrightarrow{\prime} \rightarrow$ a spectrum of excited meson states
$\rightarrow \rightarrow$ JPC assignment possible (irrelevance of cubic lattice at small distances?)
" \rightarrow no observed dependence on the size of the box (box much bigger than the states?)

obviously not completely!

" \rightarrow meson resonances shouldn't have a unique energy
$-\rightarrow$ enhancements in meson-meson continuum
$\xrightarrow{\prime \rightarrow} \rightarrow$ no meson-meson continuum in finite-volume
\rightarrow but should be 'extra' discrete states
\rightarrow strong volume dependence
periodic b.c.
$\psi(x)=\psi(x+L)$
$\psi(x)=e^{i k x} \quad k=\frac{2 \pi}{L} n$
$\xrightarrow{\prime} \rightarrow$ should respect cubic (boundary) symmetry

volume dependence \& multi-meson states

$$
\begin{array}{r}
E_{\pi \pi}^{(0)}=2 \sqrt{m_{\pi}^{2}+\left(\frac{2 \pi}{L}\right)^{2} n^{2}} \\
k=\frac{2 \pi}{L}\left[n_{x}, n_{y}, n_{z}\right]
\end{array}
$$

non-interacting $\pi \pi$ energies

$$
\mathrm{L}=16 \quad \mathrm{~L}=20
$$

where are the meson-meson states ... ?

where are the rest of the levels?

it would seem that 'local' operators aren't overlapping strongly onto the meson-meson components of the finite-volume eigenstates
$" \rightarrow$ overlap likely suppressed by the volume $\langle M M| \bar{\psi} \ldots \psi|0\rangle \sim \frac{1}{V}$
the lack of cubic symmetry restriction in the spectrum

- reflects an effectively fine lattice spacing
- and not sampling states that 'feel' the cubic boundary
solution - include operators that resemble meson-meson (which sample the whole volume of the lattice)...

meson-meson operators

$$
\mathcal{O}^{\Lambda \lambda}=\sum_{\hat{\vec{k}}_{1}, \hat{\vec{k}}_{2}} C^{\Lambda \lambda}\left(\hat{\vec{k}}_{1}, \hat{\vec{k}}_{2}\right) \mathcal{O}_{\pi}\left(\vec{k}_{1}\right) \mathcal{O}_{\pi}\left(\vec{k}_{2}\right) \quad \text { 'pions' of definite momentum }
$$

variational basis is increasing values of $|\mathbf{k}|$

$$
\mathcal{O}^{\Lambda \lambda}=\sum_{\hat{\vec{k}}_{1}, \hat{\vec{k}}_{2}} C^{\Lambda \lambda}\left(\hat{\vec{k}}_{1}, \hat{\vec{k}}_{2}\right) \sum_{\vec{x}} \mathcal{O}_{\pi}(\vec{x}) e^{i \vec{k}_{1} \cdot \vec{x}} \sum_{\vec{y}} \mathcal{O}_{\pi}(\vec{y}) e^{i \vec{k}_{2} \cdot \vec{y}}
$$

all relative positions are summed over
(technical challenge to implement this in lattice QCD ... distillation)

$\pi \pi I=2$

a relatively simple channel
empirically weak and repulsive - no resonances
no quark-antiquark operator constructions required
no quark-line annihilation diagrams in $q q \bar{q} \bar{q} \rightarrow q q \bar{q} \bar{q}$

$\pi \pi I=2$

$\pi \pi I=2$

spectrum \rightarrow phase-shift

very roughly speaking

actually complications from the cubic symmetry mixes up different angular momenta

$\pi \pi$ I=2 phase-shifts

$\pi \pi I=1$ \& the ρ resonance

large basis of 'local' quark bilinears and $\pi \pi$ constructions

solve variational problem in this extended basis ...
the resulting spectrum changes w.r.t using just 'local' quark bilinears !

including multi-meson operators

including multi-meson operators - $\pi \pi$ in-flight

$$
\text { e.g. } \mathrm{Dic}_{4} A_{1}^{-} \mathrm{P}=[100] \text { on } 24^{3} \text { ("in-flight helicity zero") }
$$

including multi-meson operators

a resonance?

a resonance?

the " ρ " resonance in $\pi \pi$

the " ρ " resonance in $\pi \pi$

thresh
thresh

excited meson spectroscopy

hadron spectrum collaboration is focussed on computing excited hadron properties
'reliable' extraction of excited states through
$\rightarrow \rightarrow$ new correlator construction methods
$\rightarrow \rightarrow$ new, large, interpolating operator bases
$\rightarrow \rightarrow$ constrained analysis techniques
scattering and resonance properties in finite-volume
\rightarrow careful analysis of excited state spectra in finite-volume
$\rightarrow \pi \pi$ I=2 elastic phase-shifts in S-wave and D-wave
$\rightarrow \pi \pi I=1$ elastic phase-shift in P-wave - shows a ρ resonance
\& more to come
$\rightarrow \rightarrow$ move toward physical parameters (230 MeV pions soon)
\rightarrow more physics quantities: inelastic scattering, three-particle final states ...

