meson spectra from lattice QCD

Jozef Dudek Old Dominion University & Jefferson Lab

not a review !

... rather the ongoing story of the hadron spectrum collaboration's travails on the road to the excited hadron spectrum ...

"Therefore, my dear friend and companion,... if I should sometimes put on a fool's cap with a bell to it, for a moment or two as we pass along, don't fly off, but rather courteously give me credit for a little more wisdom than appears upon my outside; and as we jog on, either laugh with me, or at me, or in short do any thing, only keep your temper."

Laurence Sterne: The Life and Opinions of Tristram Shandy, Gentleman

hadron spectrum collaboration

Dudek, Edwards, Joo, L. Liu, Mathur, Moir, Peardon, Richards, Ryan, C. Thomas, Vilaseca, Wallace

Jefferson Lab, Trinity College, Dublin, Old Dominion University, Tata, Mumbai, **University of Maryland**

- → "Excited and exotic charmonium spectroscopy from lattice QCD" JHEP 07 (2012) 126
- → "The lightest hybrid meson supermultiplet in QCD" PRD.84.074023 (2011)
- → "Isoscalar meson spectroscopy from lattice QCD" PRD.83.071504 (2011)
- → "Toward the excited meson spectrum of dynamical QCD" PRD.82.034508 (2010)
- → "Highly excited and exotic meson spectrum from dynamical lattice QCD" PRL.103.262001 (2009)
- spectrum → "Hybrid Baryons in QCD" - PRD.85.054016 (2012)
 - → "Excited state baryon spectroscopy from lattice QCD" PRD.84.074508 (2011)

 \Rightarrow "S and D-wave phase shifts in isospin-2 $\pi\pi$ scattering from lattice QCD" - arXiv:1203.6041 (PRD in press)

"→ "The phase-shift of isospin-2 ππ scattering from lattice QCD" - PRD.83.071504 (2011)

→ "Helicity operators for mesons in flight on the lattice" - PRD.85.014507 (2012)

Chiral Dynamics, JLab

neson

baryon

hadron

ttice

scattering

hadron spectrum collaboration

'our' lattices (generated to make spectroscopy as simple as possible)

Clover improved Wilson quarks

 $\left| ~ \mathcal{O}(a^2) ~ ext{discretisation errors ?}
ight|$

anisotropy (finer in time)

$$a_s \sim 0.12 \,\mathrm{fm}$$
$$a_t \sim 0.035 \,\mathrm{fm} \sim \frac{1}{5.8 \,\mathrm{GeV}}$$

two light dynamical flavours, plus dynamical strange quarks

$$m_{\pi} \sim 230, 400, 450, 525, 700 \text{ MeV}$$

$$16^{3} \times 128$$

$$24^{3} \times 128$$

$$32^{3} \times 256$$

$$40^{3} \times 256$$

$$16^{3} \times 128$$

$$20^{3} \times 128$$

$$20^{3} \times 128$$

$$20^{3} \times 128$$

$$24^{3} \times 128$$

$$24^{3} \times 128$$

$$32^{3} \times 256$$

$$(48^{3} \times 512 ?)$$

excited meson states

in a finite-volume, expect a discrete spectrum of states

extract from meson two-point correlators

$$\begin{split} C_{ij}(t) &= \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j(0) \right| 0 \right\rangle \qquad \mathcal{O}_i \text{ combination of quark and gluon fields} \\ C_{ij}(t) &= \sum_{\mathfrak{n}} Z_i^{(\mathfrak{n})} Z_j^{(\mathfrak{n})} e^{-\frac{E_{\mathfrak{n}} t}{\text{finite-volume eigenstates of } H_{\text{QCD}}} \end{split}$$

first practical question:

"can we extract an excited-state spectrum ?"

- which correlators should we compute ?
- → how to extract the spectrum ?

excited meson states - spectrum extraction

variational analysis of a matrix of correlators

'optimal' operator for state \mathfrak{n} $\Omega_{\mathfrak{n}} = \sum_i v_i^{(\mathfrak{n})} \mathcal{O}_i \lim_{\substack{\text{linear combination}\\ \text{of basis ops}}}$

variational solution
(c.f. Rayleigh-Ritz)
$$C(t)v^{(n)} = \lambda_n(t) C(t_0)v^{(n)}$$

eigenvalues (principal correlators)
$$\lambda_{\mathfrak{n}}(t) \sim e^{-E_{\mathfrak{n}}(t-t_0)}$$

takes advantage of an enforced orthogonality of eigenvectors to distinguish near-degenerate states

$$v^{(\mathfrak{m})}C(t_0)v^{(\mathfrak{n})} = \delta_{\mathfrak{n},\mathfrak{m}}$$

a simple basis of meson operators - fermion bilinears

$$\overline{\psi}\Gamma\overleftrightarrow{D}\ldots\overleftrightarrow{D}\psi$$

smeared quark fields up to three covariant derivatives

can form definite $J^{\mbox{\scriptsize PC}}$ operators

$$\mathcal{O}_{M}^{J^{PC}}$$

but the lattice symmetry is cubic \Rightarrow 'subduce' into irreducible representations

$$\mathcal{O}_{\lambda}^{\Lambda^{PC}} = \sum_{M} \mathcal{S}_{\Lambda,\lambda}^{J,M} \mathcal{O}_{M}^{J^{PC}}$$

Λ	J
$\overline{A_1}$	$0, 4 \dots$
T_1	$1,3,4\ldots$
T_2	$2,3,4\ldots$
E	$2, 4\ldots$
A_2	3

an isovector meson spectrum $m_{\pi} = 396 \text{ MeV}$ $24^3 \times 128$ taking the continuum spin assignments seriously : $L \sim 3 \text{ fm}$ $m_{\pi}L \sim 5.7$

scale setting

$$m = \frac{am}{am_{\Omega}} m_{\Omega}^{\rm phys}$$

Chiral Dynamics, JLab

smaller volumes in Phys.Rev.D82 034508 (2010)

 $m_{\pi} = 396 \,\mathrm{MeV}$

 $16^3 \times 128$

same methods in the isoscalar sector:

Hadron Spectrum Collab. Phys.Rev. D83 (2011) 111502

volume dependence - T_1^{--}

no significant volume dependence ...?

so is this successful ?

- → a spectrum of excited meson states
- → J^{PC} assignment possible (irrelevance of cubic lattice at small distances?)
- **no observed dependence on the size of the box (**box much bigger than the states?**)**

obviously not completely!

- meson resonances shouldn't have a unique energy
- enhancements in meson-meson continuum
 - no meson-meson continuum in finite-volume
 - → but should be 'extra' discrete states
 - → strong volume dependence

```
periodic b.c.

\psi(x) = \psi(x + L) \psi(x) = e^{ikx} k = \frac{2\pi}{L}n

\psi(x) = b^{ikx} should respect cubic (boundary) symmetry
```

volume dependence & multi-meson states

where are the rest of the levels ?

it would seem that 'local' operators aren't overlapping strongly onto the meson-meson components of the finite-volume eigenstates

 \Rightarrow overlap likely suppressed by the volume $\langle MM | \overline{\psi} \dots \psi | 0 \rangle \sim \frac{1}{V}$

the lack of cubic symmetry restriction in the spectrum

- reflects an effectively fine lattice spacing
- and not sampling states that 'feel' the cubic boundary

solution - include operators that resemble meson-meson (which sample the whole volume of the lattice) ...

meson-meson operators

$$\mathcal{O}^{\Lambda\lambda} = \sum_{\hat{\vec{k}}_1, \hat{\vec{k}}_2} C^{\Lambda\lambda}(\hat{\vec{k}}_1, \hat{\vec{k}}_2) \mathcal{O}_{\pi}(\vec{k}_1) \mathcal{O}_{\pi}(\vec{k}_2)$$

'pions' of definite momentum

variational basis is increasing values of $|\mathbf{k}|$

$$\mathcal{O}^{\Lambda\lambda} = \sum_{\hat{\vec{k}}_1, \hat{\vec{k}}_2} C^{\Lambda\lambda}(\hat{\vec{k}}_1, \hat{\vec{k}}_2) \sum_{\vec{x}} \mathcal{O}_{\pi}(\vec{x}) e^{i\vec{k}_1 \cdot \vec{x}} \sum_{\vec{y}} \mathcal{O}_{\pi}(\vec{y}) e^{i\vec{k}_2 \cdot \vec{y}}$$

all relative positions are summed over

(technical challenge to implement this in lattice QCD ... distillation)

a relatively simple channel

empirically weak and repulsive - no resonances

no quark-antiquark operator constructions required

no quark-line annihilation diagrams in $~qq\bar{q}\bar{q}\to qq\bar{q}\bar{q}$

very roughly speaking

actually complications from the cubic symmetry mixes up different angular momenta

 $\pi\pi$ I=2 phase-shifts

$\pi\pi$ I=1 & the ρ resonance

large basis of 'local' quark bilinears and $\pi\pi$ constructions

solve variational problem in this extended basis ...

the resulting spectrum changes w.r.t using just 'local' quark bilinears !

including multi-meson operators

 $m_{\pi} \approx 396 \,\mathrm{MeV}$

including multi-meson operators - $\pi\pi$ in-flight

e.g. $\text{Dic}_4 A_1^-$ P=[100] on 24³ ("in-flight helicity zero")

including multi-meson operators

a resonance ?

excited meson spectroscopy

hadron spectrum collaboration is focussed on computing excited hadron properties

- new correlator construction methods
- mew, large, interpolating operator bases

scattering and resonance properties in finite-volume

- $\rightarrow \pi\pi$ I=2 elastic phase-shifts in S-wave and D-wave
- $\Rightarrow \pi\pi$ I=1 elastic phase-shift in P-wave shows a ρ resonance

& more to come

- meters (230 MeV pions soon)
- methy more physics quantities: inelastic scattering, three-particle final states ...